2022 |
|
![]() | Park, Jaemin; Nam, Jiyun; Seo, Myungeun; Li, Sheng Side-chain density driven morphology transition in brush−linear diblock copolymers Journal Article ACS Macro Lett., 11 (4), pp. 468-474, 2022, ISBN: 2161-1653. Abstract | BibTeX | Tags: Bottlebrush polymer Graft copolymer Microphase separation Postpolymerization modification RAFT polymerization @article{Li2022, title = {Side-chain density driven morphology transition in brush−linear diblock copolymers}, author = {Jaemin Park AND Jiyun Nam AND Myungeun Seo AND Sheng Li}, url = {https://pubs.acs.org/doi/10.1021/acsmacrolett.2c00068}, doi = {10.1021/acsmacrolett.2c00068}, isbn = {2161-1653}, year = {2022}, date = {2022-04-19}, journal = {ACS Macro Lett.}, volume = {11}, number = {4}, pages = {468-474}, abstract = {We report the synthesis and self-assembly of brush–linear diblock copolymers with variable side-chain length and density. Poly(pentafluorophenyl acrylate-g-ethylene glycol)-b-polystyrene ((PPFPA-g-PEG)-b-PS) brush–linear diblock copolymers are prepared by sequential reversible addition–fragmentation chain transfer (RAFT) polymerization of PPFPA and PS, followed by postpolymerization reaction between the precursor PPFPA-b-PS diblock copolymer and amine-functionalized PEG. By controlling the PEG chain length and the degree of substitution, we obtained brush–linear diblock copolymers with different side-chain lengths and densities. The solid-state morphologies of the diblocks are then examined by small-angle X-ray scattering (SAXS). At low PEG side-chain density, the segregation of PEG and PS away from PPFPA leads to the formation of PEG and PS lamellar domains with PPFPA in the interface. At high PEG side-chain density, the segregation is between the PPFPA-g-PEG brush block and the PS linear block, and the domain morphology is determined by the composition of the brush block. A partial experimental phase diagram is presented, and it illustrates the importance of both side-chain length and density on the microdomain morphology of brush–linear diblock copolymers.}, keywords = {Bottlebrush polymer, Graft copolymer, Microphase separation, Postpolymerization modification, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } We report the synthesis and self-assembly of brush–linear diblock copolymers with variable side-chain length and density. Poly(pentafluorophenyl acrylate-g-ethylene glycol)-b-polystyrene ((PPFPA-g-PEG)-b-PS) brush–linear diblock copolymers are prepared by sequential reversible addition–fragmentation chain transfer (RAFT) polymerization of PPFPA and PS, followed by postpolymerization reaction between the precursor PPFPA-b-PS diblock copolymer and amine-functionalized PEG. By controlling the PEG chain length and the degree of substitution, we obtained brush–linear diblock copolymers with different side-chain lengths and densities. The solid-state morphologies of the diblocks are then examined by small-angle X-ray scattering (SAXS). At low PEG side-chain density, the segregation of PEG and PS away from PPFPA leads to the formation of PEG and PS lamellar domains with PPFPA in the interface. At high PEG side-chain density, the segregation is between the PPFPA-g-PEG brush block and the PS linear block, and the domain morphology is determined by the composition of the brush block. A partial experimental phase diagram is presented, and it illustrates the importance of both side-chain length and density on the microdomain morphology of brush–linear diblock copolymers. |
2021 |
|
![]() | Nam, Jiyun; Kwon, Sangwoo; Yu, Yong-Guen; Seo, Ho-Bin; Lee, Jae-Suk; Lee, Won Bo; Kim, YongJoo; Seo, Myungeun Folding of sequence-controlled graft copolymers to subdomain-defined single-chain nanoparticles Journal Article Macromolecules, 54 (18), pp. 8829-8838, 2021, ISBN: 0024-9297. Abstract | BibTeX | Tags: CCS polymer Cross-linking Graft copolymer Polymer particle ROMP Self-assembly @article{Seo2021b, title = {Folding of sequence-controlled graft copolymers to subdomain-defined single-chain nanoparticles}, author = {Jiyun Nam AND Sangwoo Kwon AND Yong-Guen Yu AND Ho-Bin Seo AND Jae-Suk Lee AND Won Bo Lee AND YongJoo Kim AND Myungeun Seo}, url = {https://pubs.acs.org/doi/full/10.1021/acs.macromol.1c01674}, doi = {10.1021/acs.macromol.1c01674}, isbn = {0024-9297}, year = {2021}, date = {2021-09-17}, journal = {Macromolecules}, volume = {54}, number = {18}, pages = {8829-8838}, abstract = {We developed a methodology, inspired by the folding of proteins, for the precision synthesis of hairy polymer nanoparticles. High-molar mass and narrowly dispersed graft copolymers were synthesized by graft-through ring opening metathesis polymerization, to incorporate a designated number of side chains and dimerizable cinnamic acid groups. Intrachain photodimerization collapsed the backbone and arrested it into a compact globular conformation, resulting in hairy nanoparticles topologically equivalent to a core cross-linked star polymer. The single-chain collapse process translates the molecular information written on the 1D graft copolymer into the 3D globular polymer nanoparticle, like protein folding. Unprecedented control over structural parameters was achieved, including the length, number, and composition of the side chains as well as cross-linking density. Different side chains formed distinct subdomains in the sterically congested nanoparticle state and further self-assembled into micellar aggregates in a selective solvent. Both experimental observations and computational simulations indicated that preorganization of the side chains in the block sequence produces subdomains which primarily follow the backbone length scale, while random sequences showed side chain-dependent scaling. Polymer nanoparticles with discrete multiple subdomains were produced by folding of the ternary block graft copolymers. Drastic differences in the self-assembly behavior of ABC- and ACB-sequenced nanoparticles indicate that the spatial organization of subdomains can be achieved by sequence control.}, keywords = {CCS polymer, Cross-linking, Graft copolymer, Polymer particle, ROMP, Self-assembly}, pubstate = {published}, tppubtype = {article} } We developed a methodology, inspired by the folding of proteins, for the precision synthesis of hairy polymer nanoparticles. High-molar mass and narrowly dispersed graft copolymers were synthesized by graft-through ring opening metathesis polymerization, to incorporate a designated number of side chains and dimerizable cinnamic acid groups. Intrachain photodimerization collapsed the backbone and arrested it into a compact globular conformation, resulting in hairy nanoparticles topologically equivalent to a core cross-linked star polymer. The single-chain collapse process translates the molecular information written on the 1D graft copolymer into the 3D globular polymer nanoparticle, like protein folding. Unprecedented control over structural parameters was achieved, including the length, number, and composition of the side chains as well as cross-linking density. Different side chains formed distinct subdomains in the sterically congested nanoparticle state and further self-assembled into micellar aggregates in a selective solvent. Both experimental observations and computational simulations indicated that preorganization of the side chains in the block sequence produces subdomains which primarily follow the backbone length scale, while random sequences showed side chain-dependent scaling. Polymer nanoparticles with discrete multiple subdomains were produced by folding of the ternary block graft copolymers. Drastic differences in the self-assembly behavior of ABC- and ACB-sequenced nanoparticles indicate that the spatial organization of subdomains can be achieved by sequence control. |
2020 |
|
![]() | Lee, Jeonghyeon; Lopez, Gérald; Améduri, Bruno; Seo, Myungeun Synthesis of heterograft copolymers with a semifluorinated backbone by combination of grafting-through and grafting-from polymerizations Journal Article Macromolecules, 53 (8), pp. 2811–2821, 2020. Abstract | BibTeX | Tags: Alternating copolymerization ATRP Fluorinated polymer Free radical polymerization Graft copolymer Mesoporous Microphase separation Porous polymer ROP @article{Lee2020c, title = {Synthesis of heterograft copolymers with a semifluorinated backbone by combination of grafting-through and grafting-from polymerizations}, author = {Jeonghyeon Lee and Gérald Lopez and Bruno Améduri and Myungeun Seo}, year = {2020}, date = {2020-04-20}, journal = {Macromolecules}, volume = {53}, number = {8}, pages = {2811–2821}, abstract = {We report that an alternating semifluorinated copolymer of chlorotrifluoroethylene (CTFE) and vinyl ether (VE) is an attractive platform for the synthesis of heterograft copolymers consisting of two distinct side chains. The radical terpolymerization of CTFE with PLA-tethered vinyl ether (PLAVE) synthesized by ring-opening polymerization and isobutyl vinyl ether (IBVE) as a spacer produced PLA-grafted fluorinated copolymer via a “grafting-through” manner. Two PLAVEs with different molar masses (2 and 10 kg mol–1) were successfully incorporated, and the grafting density could be controlled by varying the [PLAVE]/[IBVE] initial molar ratio. From the chlorine atoms in the CTFE repeating units, atom transfer radical polymerization (ATRP) of styrene was further employed to grow PS side chains following a “grafting-from” mechanism per each (CTFE-alt-VE) repeating unit dyad. First-order kinetics was observed for the styrene polymerization and supported controlled growth of PS. The resulting heterograft copolymers possessed regularly spaced PS chains and statistically distributed PLA chains on the backbone, generating a nanoscopic disordered morphology via microphase separation driven by incompatibility between PLA and PS. By copolymerization of styrene and divinylbenzene (DVB) in neat ATRP condition, a cross-linked polymer monolith with the disordered bicontinuous morphology could be also prepared via polymerization-induced microphase separation. The cross-linked precursor was converted into a mesoporous polymer with pore size of 3.7–10.4 nm by removal of PLA. The mesopore size was tunable by adjusting the PLA molar mass and styrene/DVB molar ratio.}, keywords = {Alternating copolymerization, ATRP, Fluorinated polymer, Free radical polymerization, Graft copolymer, Mesoporous, Microphase separation, Porous polymer, ROP}, pubstate = {published}, tppubtype = {article} } We report that an alternating semifluorinated copolymer of chlorotrifluoroethylene (CTFE) and vinyl ether (VE) is an attractive platform for the synthesis of heterograft copolymers consisting of two distinct side chains. The radical terpolymerization of CTFE with PLA-tethered vinyl ether (PLAVE) synthesized by ring-opening polymerization and isobutyl vinyl ether (IBVE) as a spacer produced PLA-grafted fluorinated copolymer via a “grafting-through” manner. Two PLAVEs with different molar masses (2 and 10 kg mol–1) were successfully incorporated, and the grafting density could be controlled by varying the [PLAVE]/[IBVE] initial molar ratio. From the chlorine atoms in the CTFE repeating units, atom transfer radical polymerization (ATRP) of styrene was further employed to grow PS side chains following a “grafting-from” mechanism per each (CTFE-alt-VE) repeating unit dyad. First-order kinetics was observed for the styrene polymerization and supported controlled growth of PS. The resulting heterograft copolymers possessed regularly spaced PS chains and statistically distributed PLA chains on the backbone, generating a nanoscopic disordered morphology via microphase separation driven by incompatibility between PLA and PS. By copolymerization of styrene and divinylbenzene (DVB) in neat ATRP condition, a cross-linked polymer monolith with the disordered bicontinuous morphology could be also prepared via polymerization-induced microphase separation. The cross-linked precursor was converted into a mesoporous polymer with pore size of 3.7–10.4 nm by removal of PLA. The mesopore size was tunable by adjusting the PLA molar mass and styrene/DVB molar ratio. |
2016 |
|
![]() | Shin, Seonhee; Moon, Seohyun; Seo, Myungeun; Kim, Sang Youl J. Polym. Sci. Part A: Polym. Chem. , 54 , pp. 2971-2983, 2016. Abstract | BibTeX | Tags: ATRP Block polymer Graft copolymer Microphase separation @article{Shin2016, title = {Synthesis of coil-comb block copolymers containing polystyrene coil and poly(methyl methacrylate) side chains via atom transfer radical polymerization}, author = {Seonhee Shin and Seohyun Moon and Myungeun Seo and Sang Youl Kim}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/pola.28182}, year = {2016}, date = {2016-06-10}, journal = {J. Polym. Sci. Part A: Polym. Chem. }, volume = {54}, pages = {2971-2983}, abstract = {A series of polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy) styrene)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPS‐g‐PMMA)) and polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy)ethyl acrylate)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPEA‐g‐PMMA)) as new coil‐comb block copolymers (CCBCPs) were synthesized by atom transfer radical polymerization (ATRP). The linear diblock copolymer polystyrene‐b‐poly(4‐acetoxystyrene) and polystyrene‐b‐poly(2‐(trimethylsilyloxy)ethyl acrylate) PS‐b‐P(HEA‐TMS) were obtained by combining ATRP and activators regenerated by electron transfer (ARGET) ATRP. Secondary bromide‐initiating sites for ATRP were introduced by liberation of hydroxyl groups via deprotection and subsequent esterification reaction with 2‐bromopropionyl bromide. Grafting of PMMA onto either the PBPS block or the PBPEA block via ATRP yielded the desired PS‐b‐(PBPS‐g‐PMMA) or PS‐b‐(PBPEA‐g‐PMMA). 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography data indicated the target CCBCPs were successfully synthesized. Preliminary investigation on selected CCBCPs suggests that they can form ordered nanostructures via microphase separation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2971–2983 }, keywords = {ATRP, Block polymer, Graft copolymer, Microphase separation}, pubstate = {published}, tppubtype = {article} } A series of polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy) styrene)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPS‐g‐PMMA)) and polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy)ethyl acrylate)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPEA‐g‐PMMA)) as new coil‐comb block copolymers (CCBCPs) were synthesized by atom transfer radical polymerization (ATRP). The linear diblock copolymer polystyrene‐b‐poly(4‐acetoxystyrene) and polystyrene‐b‐poly(2‐(trimethylsilyloxy)ethyl acrylate) PS‐b‐P(HEA‐TMS) were obtained by combining ATRP and activators regenerated by electron transfer (ARGET) ATRP. Secondary bromide‐initiating sites for ATRP were introduced by liberation of hydroxyl groups via deprotection and subsequent esterification reaction with 2‐bromopropionyl bromide. Grafting of PMMA onto either the PBPS block or the PBPEA block via ATRP yielded the desired PS‐b‐(PBPS‐g‐PMMA) or PS‐b‐(PBPEA‐g‐PMMA). 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography data indicated the target CCBCPs were successfully synthesized. Preliminary investigation on selected CCBCPs suggests that they can form ordered nanostructures via microphase separation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2971–2983 |