2023 |
|
![]() | Satheeshkumar, Chinnadurai; Seo, Howon; Hong, Sujung; Kim, Pilhan; Seo, Myungeun Synthesis of triphenylene-based hierarchically porous monolith with nitroaromatic-sensitive fluorescence Journal Article Polymer, 1 (265), pp. 125577, 2023, ISBN: 0032-3861. Abstract | BibTeX | Tags: Block polymer Conjugated structure Cross-linking Hierarchical pore structure Mesoporous Microporous PIMS Porous polymer @article{Satheeshkumar2023, title = {Synthesis of triphenylene-based hierarchically porous monolith with nitroaromatic-sensitive fluorescence}, author = {Chinnadurai Satheeshkumar and Howon Seo AND Sujung Hong AND Pilhan Kim AND Myungeun Seo}, url = {https://doi.org/10.1016/j.polymer.2022.125577}, doi = {10.1016/j.polymer.2022.125577}, isbn = {0032-3861}, year = {2023}, date = {2023-01-16}, journal = {Polymer}, volume = {1}, number = {265}, pages = {125577}, abstract = {We developed a synthetic route, based on radical polymerization, to a fluorescent monolithic hierarchically porous polymer composed of extended π-conjugated triphenylene motifs. A hexa-vinyl cross-linker containing the triphenylene core was synthesized and copolymerized with styrene in the presence of a polylactide macro-chain transfer agent to produce a cross-linked block copolymer monolith. Polymerization-induced microphase separation occurred during polymerization in situ, resulting in a disordered bicontinuous morphology of polylactide and cross-linked polystyrenic domains at a nanometer scale. Removal of polylactide generated percolating mesopores with controllable pore size and exposed micropores within the polystyrenic network. A strong bluish fluorescence was observed from the resulting porous monolith, originating from the embedded triphenylene. Fluorescence was quenched upon exposure to a solution of nitroaromatic compounds. Much stronger and faster quenching compared to the nonporous analog was attributed to the improvement in access to the triphenylene group via enhanced diffusion of the analyte through the interconnected mesopores.}, keywords = {Block polymer, Conjugated structure, Cross-linking, Hierarchical pore structure, Mesoporous, Microporous, PIMS, Porous polymer}, pubstate = {published}, tppubtype = {article} } We developed a synthetic route, based on radical polymerization, to a fluorescent monolithic hierarchically porous polymer composed of extended π-conjugated triphenylene motifs. A hexa-vinyl cross-linker containing the triphenylene core was synthesized and copolymerized with styrene in the presence of a polylactide macro-chain transfer agent to produce a cross-linked block copolymer monolith. Polymerization-induced microphase separation occurred during polymerization in situ, resulting in a disordered bicontinuous morphology of polylactide and cross-linked polystyrenic domains at a nanometer scale. Removal of polylactide generated percolating mesopores with controllable pore size and exposed micropores within the polystyrenic network. A strong bluish fluorescence was observed from the resulting porous monolith, originating from the embedded triphenylene. Fluorescence was quenched upon exposure to a solution of nitroaromatic compounds. Much stronger and faster quenching compared to the nonporous analog was attributed to the improvement in access to the triphenylene group via enhanced diffusion of the analyte through the interconnected mesopores. |
2021 |
|
![]() | Lee, Jeonghyeon; Seo, Myungeun Downsizing of block polymer-templated nanopores to one nanometer via hyper-cross-linking of high χ–low N precursors Journal Article ACS Nano, 15 (5), pp. 9154-9166, 2021, ISBN: 1936-0851. Abstract | BibTeX | Tags: Block polymer Cross-linking Hierarchical pore structure Hyper-cross-linking Mesoporous Microporous PIMS Porous polymer @article{Seo2021, title = {Downsizing of block polymer-templated nanopores to one nanometer via hyper-cross-linking of high χ–low N precursors}, author = {Jeonghyeon Lee AND Myungeun Seo}, url = {https://pubs.acs.org/doi/abs/10.1021/acsnano.1c02690}, doi = {10.1021/acsnano.1c02690}, isbn = {1936-0851}, year = {2021}, date = {2021-05-05}, journal = {ACS Nano}, volume = {15}, number = {5}, pages = {9154-9166}, abstract = {Synthesizing nanoporous polymer from the block polymer template by selective removal of the sacrificial domain offers straightforward pore size control as a function of the degree of polymerization (N). Downscaling pore size into the microporous regime (<2 nm) has been thermodynamically challenging, because the low N drives the system to disorder and the small-sized pore is prone to collapse. Herein, we report that maximizing cross-linking density of a block polymer precursor with an increased interaction parameter (χ) can help successfully stabilize the structure bearing pore sizes of 1.1 nm. We adopt polymerization-induced microphase separation (PIMS) combined with hyper-cross-linking as a strategy for the preparation of the bicontinuous block polymer precursors with a densely cross-linked framework by copolymerization of vinylbenzyl chloride with divinylbenzene and also Friedel–Crafts alkylation. Incorporating 4-vinylbiphenyl as a higher-χ comonomer to the sacrificial polylactide (PLA) block and optimizing the segregation strength versus cross-linking density allow for further downscaling. Control of pore size by N of PLA is demonstrated in the range of 9.9–1.1 nm. Accessible surface area to fluorescein-tagged dextrans is regulated by the relative size of the pore to the guest, and pore size is controlled. These findings will be useful for designing microporous polymers with tailored pore size for advanced catalytic and separation applications.}, keywords = {Block polymer, Cross-linking, Hierarchical pore structure, Hyper-cross-linking, Mesoporous, Microporous, PIMS, Porous polymer}, pubstate = {published}, tppubtype = {article} } Synthesizing nanoporous polymer from the block polymer template by selective removal of the sacrificial domain offers straightforward pore size control as a function of the degree of polymerization (N). Downscaling pore size into the microporous regime (<2 nm) has been thermodynamically challenging, because the low N drives the system to disorder and the small-sized pore is prone to collapse. Herein, we report that maximizing cross-linking density of a block polymer precursor with an increased interaction parameter (χ) can help successfully stabilize the structure bearing pore sizes of 1.1 nm. We adopt polymerization-induced microphase separation (PIMS) combined with hyper-cross-linking as a strategy for the preparation of the bicontinuous block polymer precursors with a densely cross-linked framework by copolymerization of vinylbenzyl chloride with divinylbenzene and also Friedel–Crafts alkylation. Incorporating 4-vinylbiphenyl as a higher-χ comonomer to the sacrificial polylactide (PLA) block and optimizing the segregation strength versus cross-linking density allow for further downscaling. Control of pore size by N of PLA is demonstrated in the range of 9.9–1.1 nm. Accessible surface area to fluorescein-tagged dextrans is regulated by the relative size of the pore to the guest, and pore size is controlled. These findings will be useful for designing microporous polymers with tailored pore size for advanced catalytic and separation applications. |
![]() | Kim, Soobin; Varga, Gábor; Seo, Myungeun; Sápi, András; Rácz, Viktória; Gómez-Pérez, Juan F; Sebők, Dániel; Lee, Jeonghyeon; Kukovecz, Ákos; Kónya, Zoltán Nesting well-defined Pt nanoparticles within a hierarchically porous polymer as a heterogeneous Suzuki–Miyaura catalyst Journal Article ACS Appl. Nano Mater., 4 (4), pp. 4070-4076, 2021, ISSN: 2574-0970. Abstract | BibTeX | Tags: Block polymer Cross-linking Heterogeneous catalysis Hierarchical pore structure Hyper-cross-linking Mesoporous Metal nanoparticle Microporous PIMS Porous polymer @article{Kim2021, title = {Nesting well-defined Pt nanoparticles within a hierarchically porous polymer as a heterogeneous Suzuki–Miyaura catalyst}, author = {Soobin Kim and Gábor Varga and Myungeun Seo and András Sápi and Viktória Rácz and Juan F. Gómez-Pérez and Dániel Sebők and Jeonghyeon Lee and Ákos Kukovecz and Zoltán Kónya}, url = {https://pubs.acs.org/doi/full/10.1021/acsanm.1c00396}, doi = {10.1021/acsanm.1c00396}, issn = {2574-0970}, year = {2021}, date = {2021-04-23}, journal = {ACS Appl. Nano Mater.}, volume = {4}, number = {4}, pages = {4070-4076}, abstract = {A hierarchically porous polymer (HPP) consisting of micropores (∼1 nm) within a 3D continuous mesoporous wall (∼15 nm) was used to support well-defined Pt nanoparticles (2 nm in diameter) as a heterogeneous catalyst for the Suzuki–Miyaura cross-coupling reaction in the liquid phase. The ligand-capped nanoparticles were loaded into the polymer and treated with plasma to expose the active surface. The dual porosity was essential: the block polymer-templated mesopores provided the reactants facile access to the nanoparticle center, which was firmly immobilized by the microporous surface. Compared to inorganic mesoporous silica supports, which are intrinsically susceptible to basic hydrolysis, the Pt-HPP featured higher activity for all halide leaving groups, even in green solvents, as well as excellent recyclability. Only 5% decrease in activity was observed after 10 cycles. Pt-HPP was one of the most active heterogeneous catalysts for aryl chloride substrates compared to literature Pt or Pd examples.}, keywords = {Block polymer, Cross-linking, Heterogeneous catalysis, Hierarchical pore structure, Hyper-cross-linking, Mesoporous, Metal nanoparticle, Microporous, PIMS, Porous polymer}, pubstate = {published}, tppubtype = {article} } A hierarchically porous polymer (HPP) consisting of micropores (∼1 nm) within a 3D continuous mesoporous wall (∼15 nm) was used to support well-defined Pt nanoparticles (2 nm in diameter) as a heterogeneous catalyst for the Suzuki–Miyaura cross-coupling reaction in the liquid phase. The ligand-capped nanoparticles were loaded into the polymer and treated with plasma to expose the active surface. The dual porosity was essential: the block polymer-templated mesopores provided the reactants facile access to the nanoparticle center, which was firmly immobilized by the microporous surface. Compared to inorganic mesoporous silica supports, which are intrinsically susceptible to basic hydrolysis, the Pt-HPP featured higher activity for all halide leaving groups, even in green solvents, as well as excellent recyclability. Only 5% decrease in activity was observed after 10 cycles. Pt-HPP was one of the most active heterogeneous catalysts for aryl chloride substrates compared to literature Pt or Pd examples. |
2020 |
|
![]() | Lee, Jooyeon; Satheeshkumar, Chinnadurai; Yu, Hyun Jung; Kim, Seongwoo; Lee, Jong Suk; Seo, Myungeun; Kim, Min Pore engineering of covalently connected metal–organic framework nanoparticle–mixed-matrix membrane composites for molecular separation Journal Article ACS Appl. Nano Mater., 3 (9), pp. 9356–9362, 2020, ISSN: 2574-0970. Abstract | BibTeX | Tags: Cross-linking Gas separation Microporous Mixed-matrix membrane MOF Thiol-ene click reaction @article{Lee2020f, title = {Pore engineering of covalently connected metal–organic framework nanoparticle–mixed-matrix membrane composites for molecular separation}, author = {Jooyeon Lee and Chinnadurai Satheeshkumar and Hyun Jung Yu and Seongwoo Kim and Jong Suk Lee and Myungeun Seo and Min Kim}, url = {https://pubs.acs.org/doi/abs/10.1021/acsanm.0c01982}, doi = {10.1021/acsanm.0c01982}, issn = {2574-0970}, year = {2020}, date = {2020-07-27}, journal = {ACS Appl. Nano Mater.}, volume = {3}, number = {9}, pages = {9356–9362}, abstract = {Fine-tuning and pore environment control of covalently connected metal–organic framework (MOF) and mixed-matrix membrane (MMM) composite materials were achieved. Core–shell-type, dual-functionalized, zirconium-based MOFs were prepared through a postsynthetic ligand exchange (PSE) process, and active vinyl functionalities on the surface of MOF nanoparticles were utilized for polymerization by forming interfacial-covalent connections between MOF nanoparticles and polymeric membranes via thiol–ene click photopolymerization. The target functionality of the MOF pore originated from the parent MOFs, allowing pore engineering of the MOF–MMM composite materials. A series of defect-free, interface-controlled, and core-functionalized MOF–MMMs were prepared through the present methodology, and the NO2-functionalized/covalently connected MOF–MMM showed the highest CO2 permeability and solubility without loss of selectivity. This facile and versatile approach will be useful for the fabrication of functional MOF nanoparticle-based membranes for various applications, such as catalysis and separation.}, keywords = {Cross-linking, Gas separation, Microporous, Mixed-matrix membrane, MOF, Thiol-ene click reaction}, pubstate = {published}, tppubtype = {article} } Fine-tuning and pore environment control of covalently connected metal–organic framework (MOF) and mixed-matrix membrane (MMM) composite materials were achieved. Core–shell-type, dual-functionalized, zirconium-based MOFs were prepared through a postsynthetic ligand exchange (PSE) process, and active vinyl functionalities on the surface of MOF nanoparticles were utilized for polymerization by forming interfacial-covalent connections between MOF nanoparticles and polymeric membranes via thiol–ene click photopolymerization. The target functionality of the MOF pore originated from the parent MOFs, allowing pore engineering of the MOF–MMM composite materials. A series of defect-free, interface-controlled, and core-functionalized MOF–MMMs were prepared through the present methodology, and the NO2-functionalized/covalently connected MOF–MMM showed the highest CO2 permeability and solubility without loss of selectivity. This facile and versatile approach will be useful for the fabrication of functional MOF nanoparticle-based membranes for various applications, such as catalysis and separation. |
![]() | Lee, Jeonghyeon; Seo, Myungeun [특집] 미세다공성 고분자의 세공 크기 제어 전략 (strategies for controlling pore size in microporous polymers) Periodical Polymer Science and Technology, 31 (3), 2020, ISBN: 1225-0260. BibTeX | Tags: Microporous Pore size control Porous polymer @periodical{Lee2020g, title = {[특집] 미세다공성 고분자의 세공 크기 제어 전략 (strategies for controlling pore size in microporous polymers)}, author = {Jeonghyeon Lee and Myungeun Seo}, isbn = {1225-0260}, year = {2020}, date = {2020-06-01}, issuetitle = {Polymer Science and Technology}, volume = {31}, number = {3}, keywords = {Microporous, Pore size control, Porous polymer}, pubstate = {published}, tppubtype = {periodical} } |
2018 |
|
![]() | Lee, Jeonghyeon; Seo, Myungeun Hyper-cross-linked polymer with enhanced porosity by in situ removal of trimethylsilyl group via electrophilic aromatic substitution Journal Article ACS Macro Lett., 7 (12), pp. 1448-1454, 2018. Abstract | BibTeX | Tags: Hyper-cross-linking Microporous Porous polymer Postpolymerization modification RAFT polymerization @article{Lee2018c, title = {Hyper-cross-linked polymer with enhanced porosity by in situ removal of trimethylsilyl group via electrophilic aromatic substitution}, author = {Jeonghyeon Lee and Myungeun Seo}, year = {2018}, date = {2018-11-26}, journal = {ACS Macro Lett.}, volume = {7}, number = {12}, pages = {1448-1454}, abstract = {We report the synthesis of microporous hyper-cross-linked polymers (HCPs) with increased specific surface area and porosity by the in situ removal of trimethylsilyl (TMS) groups during hyper-cross-linking. We synthesized poly(4-trimethylsilylstyrene-co-vinylbenzyl chloride-co-divinylbenzene)s (P(TMSS-co-VBzCl-co-DVB)s) with different compositions by reversible addition–fragmentation chain transfer copolymerization and converted them into HCPs by reacting with FeCl3 in 1,2-dichloroethane. The nearly quantitative removal of the TMS groups was observed during the reaction following the electrophilic aromatic substitution mechanism, where the TMS group shows higher reactivity than an aromatic hydrogen. Substantial enhancement in pore characteristics including surface area, microporosity, and mesoporosity was noticed up to a certain level of TMSS incorporation, compared with HCP derived from P(VBzCl-co-DVB). We suggest the porogenic TMS group increases porosity mainly by in situ removal via facilitated substitution reaction, which creates permanent voids in the hyper-cross-linked network. The use of TMSS provides a feasible and complementary route to tuning the pore characteristics of HCPs by varying DVB content, and is applicable to the synthesis of hierarchically porous polymers containing micropores within a mesoporous framework from block polymer precursors.}, keywords = {Hyper-cross-linking, Microporous, Porous polymer, Postpolymerization modification, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } We report the synthesis of microporous hyper-cross-linked polymers (HCPs) with increased specific surface area and porosity by the in situ removal of trimethylsilyl (TMS) groups during hyper-cross-linking. We synthesized poly(4-trimethylsilylstyrene-co-vinylbenzyl chloride-co-divinylbenzene)s (P(TMSS-co-VBzCl-co-DVB)s) with different compositions by reversible addition–fragmentation chain transfer copolymerization and converted them into HCPs by reacting with FeCl3 in 1,2-dichloroethane. The nearly quantitative removal of the TMS groups was observed during the reaction following the electrophilic aromatic substitution mechanism, where the TMS group shows higher reactivity than an aromatic hydrogen. Substantial enhancement in pore characteristics including surface area, microporosity, and mesoporosity was noticed up to a certain level of TMSS incorporation, compared with HCP derived from P(VBzCl-co-DVB). We suggest the porogenic TMS group increases porosity mainly by in situ removal via facilitated substitution reaction, which creates permanent voids in the hyper-cross-linked network. The use of TMSS provides a feasible and complementary route to tuning the pore characteristics of HCPs by varying DVB content, and is applicable to the synthesis of hierarchically porous polymers containing micropores within a mesoporous framework from block polymer precursors. |
![]() | Satheeshkumar, Chinnadurai; Seo, Myungeun Creation of micropores by RAFT copolymerization of conjugated multi-vinyl cross-linkers Journal Article Polym. Chem., 9 , pp. 5680-5689, 2018. Abstract | BibTeX | Tags: Block polymer Conjugated structure Cross-linking Hierarchical pore structure Mesoporous Microporous PIMS Porous polymer @article{Satheeshkumar2018b, title = {Creation of micropores by RAFT copolymerization of conjugated multi-vinyl cross-linkers}, author = {Chinnadurai Satheeshkumar and Myungeun Seo}, year = {2018}, date = {2018-11-06}, journal = {Polym. Chem.}, volume = {9}, pages = {5680-5689}, abstract = {We report a new methodology that allows for forming micropores in hierarchically porous polymers by employing the reversible addition–fragmentation chain transfer (RAFT) copolymerization of conjugated multi-vinyl cross-linkers with styrene. Using divinylbenzene, 4,4′-divinylbiphenyl, 1,3,5-tris(4-vinylphenyl)benzene and tetrakis(4-vinylbiphenyl)methane as cross-linkers, the RAFT copolymerization was carried out in the presence of polylactide macro-chain transfer agents. During the polymerization, microphase separation occurred spontaneously to produce cross-linked block polymer precursors with a bicontinuous morphology composed of polylactide and cross-linked polystyrene microdomains. Hierarchically porous polymers with strong fluorescence were successfully derived by polylactide etching. We demonstrate that the rigid conjugated structure of the cross-linkers with a high cross-linking density is critical for creating the micropores and for stabilizing the mesopores that are templated by the polylactide domain.}, keywords = {Block polymer, Conjugated structure, Cross-linking, Hierarchical pore structure, Mesoporous, Microporous, PIMS, Porous polymer}, pubstate = {published}, tppubtype = {article} } We report a new methodology that allows for forming micropores in hierarchically porous polymers by employing the reversible addition–fragmentation chain transfer (RAFT) copolymerization of conjugated multi-vinyl cross-linkers with styrene. Using divinylbenzene, 4,4′-divinylbiphenyl, 1,3,5-tris(4-vinylphenyl)benzene and tetrakis(4-vinylbiphenyl)methane as cross-linkers, the RAFT copolymerization was carried out in the presence of polylactide macro-chain transfer agents. During the polymerization, microphase separation occurred spontaneously to produce cross-linked block polymer precursors with a bicontinuous morphology composed of polylactide and cross-linked polystyrene microdomains. Hierarchically porous polymers with strong fluorescence were successfully derived by polylactide etching. We demonstrate that the rigid conjugated structure of the cross-linkers with a high cross-linking density is critical for creating the micropores and for stabilizing the mesopores that are templated by the polylactide domain. |
![]() | Satheeshkumar, Chinnadurai; Yu, Hyun Jung; Park, Hyojin; Kim, Min; Lee, Jong Suk; Seo, Myungeun Thiol-ene photopolymerization of vinyl-functionalized metal-organic framework towards mixed-matrix membranes Journal Article J. Mater. Chem. A, 6 , pp. 21961-21968, 2018, (featured in the back cover). Abstract | BibTeX | Tags: Cross-linking Gas separation Microporous Mixed-matrix membrane MOF Thiol-ene click reaction @article{Satheeshkumar2018, title = {Thiol-ene photopolymerization of vinyl-functionalized metal-organic framework towards mixed-matrix membranes}, author = {Chinnadurai Satheeshkumar and Hyun Jung Yu and Hyojin Park and Min Kim and Jong Suk Lee and Myungeun Seo}, year = {2018}, date = {2018-08-15}, journal = {J. Mater. Chem. A}, volume = {6}, pages = {21961-21968}, abstract = {We developed a facile methodology for fabricating a free-standing mixed-matrix membrane (MMM) containing covalently incorporated metal–organic framework (MOF) particles up to 60 wt% by utilizing thiol–ene photopolymerization with the MOF consisting of vinyl functionality. Vinyl-functionalized UiO-66 (UiO-66-CH[double bond, length as m-dash]CH2) was synthesized from 2-vinyl-1,4-dicarboxylic acid with ZrCl4, and a free-standing MMM was readily produced by irradiation of a polymerization mixture containing UiO-66-CH[double bond, length as m-dash]CH2, poly(ethylene glycol) divinyl ether (PEO-250), pentaerythritol tetra(3-mercaptopropionate) (PETM), 2,2′-(ethylenedioxy)diethanethiol (EDDT), and 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photoradical initiator. Assorted analyses combining FTIR, thermogravimetric analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction strongly supported the fact that the desired MMM containing well-dispersed UiO-66-CH[double bond, length as m-dash]CH2 particles was successfully produced by C–S bond formation, which provided strong union of the MOF with the polymer matrix without interfacial voids. The produced MMM was highly flexible and showed improved mechanical properties as compared to the pristine polymeric membrane, indicating that the covalently immobilized UiO-66-CH[double bond, length as m-dash]CH2 particles were homogeneously distributed in the polymer matrix. Gas permeability across the MMM was significantly enhanced compared with the pristine polymeric membrane as diffusion of the gas molecules was facilitated in the porous space in the MOF. }, note = {featured in the back cover}, keywords = {Cross-linking, Gas separation, Microporous, Mixed-matrix membrane, MOF, Thiol-ene click reaction}, pubstate = {published}, tppubtype = {article} } We developed a facile methodology for fabricating a free-standing mixed-matrix membrane (MMM) containing covalently incorporated metal–organic framework (MOF) particles up to 60 wt% by utilizing thiol–ene photopolymerization with the MOF consisting of vinyl functionality. Vinyl-functionalized UiO-66 (UiO-66-CH[double bond, length as m-dash]CH2) was synthesized from 2-vinyl-1,4-dicarboxylic acid with ZrCl4, and a free-standing MMM was readily produced by irradiation of a polymerization mixture containing UiO-66-CH[double bond, length as m-dash]CH2, poly(ethylene glycol) divinyl ether (PEO-250), pentaerythritol tetra(3-mercaptopropionate) (PETM), 2,2′-(ethylenedioxy)diethanethiol (EDDT), and 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photoradical initiator. Assorted analyses combining FTIR, thermogravimetric analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction strongly supported the fact that the desired MMM containing well-dispersed UiO-66-CH[double bond, length as m-dash]CH2 particles was successfully produced by C–S bond formation, which provided strong union of the MOF with the polymer matrix without interfacial voids. The produced MMM was highly flexible and showed improved mechanical properties as compared to the pristine polymeric membrane, indicating that the covalently immobilized UiO-66-CH[double bond, length as m-dash]CH2 particles were homogeneously distributed in the polymer matrix. Gas permeability across the MMM was significantly enhanced compared with the pristine polymeric membrane as diffusion of the gas molecules was facilitated in the porous space in the MOF. |
![]() | Park, Jongmin; Kim, KyuHan; Seo, Myungeun Chem. Commun., 54 , pp. 7908-7911, 2018. Abstract | BibTeX | Tags: Block polymer Diffusion Emulsion Hierarchical pore structure Hyper-cross-linking Macroporous Mesoporous Microporous PIMS Pore size control Porous polymer RAFT polymerization @article{Park2018, title = {Hyper-cross-linked polymer with controlled multiscale porosity via polymerization-induced microphase separation within high internal phase emulsion}, author = {Jongmin Park and KyuHan Kim and Myungeun Seo}, url = {https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc03508c#!divAbstract}, year = {2018}, date = {2018-06-20}, journal = {Chem. Commun.}, volume = {54}, pages = {7908-7911}, abstract = {We report the preparation of hierarchically porous polymers containing fully interconnected and controlled micro-, meso-, and macropores, where a hyper-cross-linked microporous polymer skeleton forms a reticulating mesoporous wall that supports a highly porous macropore framework. These materials provide high specific surface area and >90% porosity, useful for rapid sorption of organic molecules.}, keywords = {Block polymer, Diffusion, Emulsion, Hierarchical pore structure, Hyper-cross-linking, Macroporous, Mesoporous, Microporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } We report the preparation of hierarchically porous polymers containing fully interconnected and controlled micro-, meso-, and macropores, where a hyper-cross-linked microporous polymer skeleton forms a reticulating mesoporous wall that supports a highly porous macropore framework. These materials provide high specific surface area and >90% porosity, useful for rapid sorption of organic molecules. |
![]() | Kim, Soobin; Seo, Myungeun Control of porosity in hierarchically porous polymers derived from hyper-crosslinked block polymer precursors Journal Article J. Polym. Sci. Part A: Polym. Chem., 56 , pp. 900-913, 2018, (featured in the front cover). Abstract | BibTeX | Tags: Block polymer Diffusion Hierarchical pore structure Hyper-cross-linking Mesoporous Microporous PIMS Porous polymer @article{Kim2018, title = {Control of porosity in hierarchically porous polymers derived from hyper-crosslinked block polymer precursors}, author = {Soobin Kim and Myungeun Seo}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/pola.28987}, year = {2018}, date = {2018-03-06}, journal = {J. Polym. Sci. Part A: Polym. Chem.}, volume = {56}, pages = {900-913}, abstract = {This image from the research of Soobin Kim and Myungeun Seo on page 900 shows a scanning electron micrograph of a hierarchically porous polymer synthesized by combination of hyper‐crosslinking with polymerization‐induced microphase separation (PIMS). Three‐dimensionally continuous mesopores with size of ca. 10 nm are evident. The PIMS process allows them to readily produce a crosslinked block polymer precursor with a disordered bicontinuous morphology composed of polylactide (PLA) and polystyrenic microdomains. A hyper‐crosslinking reaction degrades the PLA to generate the mesoporous space, and it simultaneously creates micropores smaller than 2 nm (not visible) within the polystyrenic microdomain to yield the hierarchical pore structure. This provides improved stability and accelerated diffusion to microporous surface. (DOI: 10.1002/pola.28966)}, note = {featured in the front cover}, keywords = {Block polymer, Diffusion, Hierarchical pore structure, Hyper-cross-linking, Mesoporous, Microporous, PIMS, Porous polymer}, pubstate = {published}, tppubtype = {article} } This image from the research of Soobin Kim and Myungeun Seo on page 900 shows a scanning electron micrograph of a hierarchically porous polymer synthesized by combination of hyper‐crosslinking with polymerization‐induced microphase separation (PIMS). Three‐dimensionally continuous mesopores with size of ca. 10 nm are evident. The PIMS process allows them to readily produce a crosslinked block polymer precursor with a disordered bicontinuous morphology composed of polylactide (PLA) and polystyrenic microdomains. A hyper‐crosslinking reaction degrades the PLA to generate the mesoporous space, and it simultaneously creates micropores smaller than 2 nm (not visible) within the polystyrenic microdomain to yield the hierarchical pore structure. This provides improved stability and accelerated diffusion to microporous surface. (DOI: 10.1002/pola.28966) |