2023 |
|
![]() | Satheeshkumar, Chinnadurai; Seo, Howon; Hong, Sujung; Kim, Pilhan; Seo, Myungeun Synthesis of triphenylene-based hierarchically porous monolith with nitroaromatic-sensitive fluorescence Journal Article Polymer, 1 (265), pp. 125577, 2023, ISBN: 0032-3861. Abstract | BibTeX | Tags: Block polymer Conjugated structure Cross-linking Hierarchical pore structure Mesoporous Microporous PIMS Porous polymer @article{Satheeshkumar2023, title = {Synthesis of triphenylene-based hierarchically porous monolith with nitroaromatic-sensitive fluorescence}, author = {Chinnadurai Satheeshkumar and Howon Seo AND Sujung Hong AND Pilhan Kim AND Myungeun Seo}, url = {https://doi.org/10.1016/j.polymer.2022.125577}, doi = {10.1016/j.polymer.2022.125577}, isbn = {0032-3861}, year = {2023}, date = {2023-01-16}, journal = {Polymer}, volume = {1}, number = {265}, pages = {125577}, abstract = {We developed a synthetic route, based on radical polymerization, to a fluorescent monolithic hierarchically porous polymer composed of extended π-conjugated triphenylene motifs. A hexa-vinyl cross-linker containing the triphenylene core was synthesized and copolymerized with styrene in the presence of a polylactide macro-chain transfer agent to produce a cross-linked block copolymer monolith. Polymerization-induced microphase separation occurred during polymerization in situ, resulting in a disordered bicontinuous morphology of polylactide and cross-linked polystyrenic domains at a nanometer scale. Removal of polylactide generated percolating mesopores with controllable pore size and exposed micropores within the polystyrenic network. A strong bluish fluorescence was observed from the resulting porous monolith, originating from the embedded triphenylene. Fluorescence was quenched upon exposure to a solution of nitroaromatic compounds. Much stronger and faster quenching compared to the nonporous analog was attributed to the improvement in access to the triphenylene group via enhanced diffusion of the analyte through the interconnected mesopores.}, keywords = {Block polymer, Conjugated structure, Cross-linking, Hierarchical pore structure, Mesoporous, Microporous, PIMS, Porous polymer}, pubstate = {published}, tppubtype = {article} } We developed a synthetic route, based on radical polymerization, to a fluorescent monolithic hierarchically porous polymer composed of extended π-conjugated triphenylene motifs. A hexa-vinyl cross-linker containing the triphenylene core was synthesized and copolymerized with styrene in the presence of a polylactide macro-chain transfer agent to produce a cross-linked block copolymer monolith. Polymerization-induced microphase separation occurred during polymerization in situ, resulting in a disordered bicontinuous morphology of polylactide and cross-linked polystyrenic domains at a nanometer scale. Removal of polylactide generated percolating mesopores with controllable pore size and exposed micropores within the polystyrenic network. A strong bluish fluorescence was observed from the resulting porous monolith, originating from the embedded triphenylene. Fluorescence was quenched upon exposure to a solution of nitroaromatic compounds. Much stronger and faster quenching compared to the nonporous analog was attributed to the improvement in access to the triphenylene group via enhanced diffusion of the analyte through the interconnected mesopores. |
2020 |
|
![]() | Lee, Jinhee; Park, Jeyoung; Choi, Hojung; Yoon, Young Rok; Seo, Myungeun; Song, Sua; Kim, Byung‑Kwon; Kim, Sang Youl Synthesis of regiocontrolled triarylamine-based polymer with a naphthol unit Journal Article Polym. Bull. , 78 (2), pp. 965-979, 2020. Abstract | BibTeX | Tags: Conjugated structure Oxidative coupling polymerization Polycondensation Regioselectivity @article{Lee2020b, title = {Synthesis of regiocontrolled triarylamine-based polymer with a naphthol unit}, author = {Jinhee Lee and Jeyoung Park and Hojung Choi and Young Rok Yoon and Myungeun Seo and Sua Song and Byung‑Kwon Kim and Sang Youl Kim}, doi = {10.1007/s00289-020-03146-y}, year = {2020}, date = {2020-03-02}, journal = {Polym. Bull. }, volume = {78}, number = {2}, pages = {965-979}, abstract = {Redox-active polytriarylamine with hydroxyl groups is a useful material for optoelectronic applications, especially in the solution-processable multilayer devices. A novel regiocontrolled triarylamine-based polymer, poly(di-5-naphthyl-2-ol)phenylamine, with 2-naphthol units was synthesized via oxidative coupling polymerization. Polymerization in tetrahydrofuran using a Cu-amine complex oxidant under O2 atmosphere produced polymers with number-averaged molecular weights as high as 11,300 g mol−1. The structure of the polymer was characterized by 1H and 13C NMR spectroscopy, showing that the oxidative coupling polymerization occurred at the outer ortho position of the 2-naphthols, preserving the hydroxyl groups. The polymer exhibited good solubility in polar aprotic solvents, with a high thermal stability of 446 °C that corresponded to 5% weight loss. The UV–vis absorption of the polymer was similar to that of DNPA, indicating that the kinked-structured polymer hindered the formation of charge-transfer complexes. These results suggest promising applications of the developed polymer in optoelectronic devices.}, keywords = {Conjugated structure, Oxidative coupling polymerization, Polycondensation, Regioselectivity}, pubstate = {published}, tppubtype = {article} } Redox-active polytriarylamine with hydroxyl groups is a useful material for optoelectronic applications, especially in the solution-processable multilayer devices. A novel regiocontrolled triarylamine-based polymer, poly(di-5-naphthyl-2-ol)phenylamine, with 2-naphthol units was synthesized via oxidative coupling polymerization. Polymerization in tetrahydrofuran using a Cu-amine complex oxidant under O2 atmosphere produced polymers with number-averaged molecular weights as high as 11,300 g mol−1. The structure of the polymer was characterized by 1H and 13C NMR spectroscopy, showing that the oxidative coupling polymerization occurred at the outer ortho position of the 2-naphthols, preserving the hydroxyl groups. The polymer exhibited good solubility in polar aprotic solvents, with a high thermal stability of 446 °C that corresponded to 5% weight loss. The UV–vis absorption of the polymer was similar to that of DNPA, indicating that the kinked-structured polymer hindered the formation of charge-transfer complexes. These results suggest promising applications of the developed polymer in optoelectronic devices. |
2018 |
|
![]() | Satheeshkumar, Chinnadurai; Seo, Myungeun Creation of micropores by RAFT copolymerization of conjugated multi-vinyl cross-linkers Journal Article Polym. Chem., 9 , pp. 5680-5689, 2018. Abstract | BibTeX | Tags: Block polymer Conjugated structure Cross-linking Hierarchical pore structure Mesoporous Microporous PIMS Porous polymer @article{Satheeshkumar2018b, title = {Creation of micropores by RAFT copolymerization of conjugated multi-vinyl cross-linkers}, author = {Chinnadurai Satheeshkumar and Myungeun Seo}, year = {2018}, date = {2018-11-06}, journal = {Polym. Chem.}, volume = {9}, pages = {5680-5689}, abstract = {We report a new methodology that allows for forming micropores in hierarchically porous polymers by employing the reversible addition–fragmentation chain transfer (RAFT) copolymerization of conjugated multi-vinyl cross-linkers with styrene. Using divinylbenzene, 4,4′-divinylbiphenyl, 1,3,5-tris(4-vinylphenyl)benzene and tetrakis(4-vinylbiphenyl)methane as cross-linkers, the RAFT copolymerization was carried out in the presence of polylactide macro-chain transfer agents. During the polymerization, microphase separation occurred spontaneously to produce cross-linked block polymer precursors with a bicontinuous morphology composed of polylactide and cross-linked polystyrene microdomains. Hierarchically porous polymers with strong fluorescence were successfully derived by polylactide etching. We demonstrate that the rigid conjugated structure of the cross-linkers with a high cross-linking density is critical for creating the micropores and for stabilizing the mesopores that are templated by the polylactide domain.}, keywords = {Block polymer, Conjugated structure, Cross-linking, Hierarchical pore structure, Mesoporous, Microporous, PIMS, Porous polymer}, pubstate = {published}, tppubtype = {article} } We report a new methodology that allows for forming micropores in hierarchically porous polymers by employing the reversible addition–fragmentation chain transfer (RAFT) copolymerization of conjugated multi-vinyl cross-linkers with styrene. Using divinylbenzene, 4,4′-divinylbiphenyl, 1,3,5-tris(4-vinylphenyl)benzene and tetrakis(4-vinylbiphenyl)methane as cross-linkers, the RAFT copolymerization was carried out in the presence of polylactide macro-chain transfer agents. During the polymerization, microphase separation occurred spontaneously to produce cross-linked block polymer precursors with a bicontinuous morphology composed of polylactide and cross-linked polystyrene microdomains. Hierarchically porous polymers with strong fluorescence were successfully derived by polylactide etching. We demonstrate that the rigid conjugated structure of the cross-linkers with a high cross-linking density is critical for creating the micropores and for stabilizing the mesopores that are templated by the polylactide domain. |
![]() | You, Hoseon; Kim, Donguk; Cho, Han‐Hee; Lee, Changyeon; Chong, Sanggyu; Ahn, Nam Young; Seo, Myungeun; Kim, Jihan; Kim, Felix Sunjoo; Kim, Bumjoon J Adv. Funct. Mater., 28 , pp. 1803613, 2018. Abstract | BibTeX | Tags: Conjugated structure OFET Polycondensation Polymer solar cell @article{You2018, title = {Shift of the branching point of the side‐chain in naphthalenediimide (NDI)‐based polymer for enhanced electron mobility and all‐polymer solar cell performance}, author = {Hoseon You and Donguk Kim and Han‐Hee Cho and Changyeon Lee and Sanggyu Chong and Nam Young Ahn and Myungeun Seo and Jihan Kim and Felix Sunjoo Kim and Bumjoon J. Kim}, year = {2018}, date = {2018-08-24}, journal = {Adv. Funct. Mater.}, volume = {28}, pages = {1803613}, abstract = {The branching point of the side‐chain of naphthalenediimide (NDI)‐based conjugated polymers is systematically controlled by incorporating four different side‐chains, i.e., 2‐hexyloctyl (P(NDI1‐T)), 3‐hexylnonyl (P(NDI2‐T)), 4‐hexyldecyl (P(NDI3‐T)), and 5‐hexylundecyl (P(NDI4‐T)). When the branching point is located farther away from the conjugated backbones, steric hindrance around the backbone is relaxed and the intermolecular interactions between the polymer chains become stronger, which promotes the formation of crystalline structures in thin film state. In particular, thermally annealed films of P(NDI3‐T) and P(NDI4‐T), which have branching points far away from the backbone, possess more‐developed bimodal structure along both the face‐on and edge‐on orientations. Consequently, the field‐effect electron mobilities of P(NDIm‐T) polymers are monotonically increased from 0.03 cm2 V−1 s−1 in P(NDI1‐T) to 0.22 cm2 V−1 s−1 in P(NDI4‐T), accompanied by reduced activation energy and contact resistance of the thin films. In addition, when the series of P(NDIm‐T) polymers is applied in all‐polymer solar cells (all‐PSCs) as electron acceptor, remarkably high‐power conversion efficiency of 7.1% is achieved along with enhanced current density in P(NDI3‐T)‐based all‐PSCs, which is mainly attributed to red‐shifted light absorption and enhanced electron‐transporting ability.}, keywords = {Conjugated structure, OFET, Polycondensation, Polymer solar cell}, pubstate = {published}, tppubtype = {article} } The branching point of the side‐chain of naphthalenediimide (NDI)‐based conjugated polymers is systematically controlled by incorporating four different side‐chains, i.e., 2‐hexyloctyl (P(NDI1‐T)), 3‐hexylnonyl (P(NDI2‐T)), 4‐hexyldecyl (P(NDI3‐T)), and 5‐hexylundecyl (P(NDI4‐T)). When the branching point is located farther away from the conjugated backbones, steric hindrance around the backbone is relaxed and the intermolecular interactions between the polymer chains become stronger, which promotes the formation of crystalline structures in thin film state. In particular, thermally annealed films of P(NDI3‐T) and P(NDI4‐T), which have branching points far away from the backbone, possess more‐developed bimodal structure along both the face‐on and edge‐on orientations. Consequently, the field‐effect electron mobilities of P(NDIm‐T) polymers are monotonically increased from 0.03 cm2 V−1 s−1 in P(NDI1‐T) to 0.22 cm2 V−1 s−1 in P(NDI4‐T), accompanied by reduced activation energy and contact resistance of the thin films. In addition, when the series of P(NDIm‐T) polymers is applied in all‐polymer solar cells (all‐PSCs) as electron acceptor, remarkably high‐power conversion efficiency of 7.1% is achieved along with enhanced current density in P(NDI3‐T)‐based all‐PSCs, which is mainly attributed to red‐shifted light absorption and enhanced electron‐transporting ability. |
2014 |
|
![]() | Lee, Jinhee; Cha, Hyojung; Kong, Hoyoul; Seo, Myungeun; Heo, Jaewon; Jung, In Hwan; Kim, Jisung; Shim, Hong-Ku; Park, Chan Eon; Kim, Sang Youl Synthesis of triarylamine-based alternating copolymers for polymeric solar cell Journal Article Polymer, 55 , pp. 4837-4845, 2014. Abstract | BibTeX | Tags: Conjugated structure Cross‐coupling reaction Polycondensation Polymer solar cell @article{Lee2014b, title = {Synthesis of triarylamine-based alternating copolymers for polymeric solar cell}, author = {Jinhee Lee and Hyojung Cha and Hoyoul Kong and Myungeun Seo and Jaewon Heo and In Hwan Jung and Jisung Kim and Hong-Ku Shim and Chan Eon Park and Sang Youl Kim}, url = {https://www.sciencedirect.com/science/article/abs/pii/S003238611400696X}, year = {2014}, date = {2014-09-15}, journal = {Polymer}, volume = {55}, pages = {4837-4845}, abstract = {Two donor-acceptor alternating copolymers based on electron-rich triarylamine, di(1-(6-(2-ethylhexyl))naphthyl)phenylamine (DNPA), and electron-deficient benzothiadiazole and benzoselenadiazole derivatives were designed and synthesized via Suzuki coupling reaction. The resulting triarylamine-based alternating copolymers PDNPADTBT and PDNPADTBS showed good solubility in common organic solvents and good thermal stability. The optical band gaps determined from the onset absorption were 1.93 and 1.81 eV, respectively. By introducing the naphthalene ring into the triarylamine, copolymers had relatively deep HOMO energy levels of −5.48 and −5.45 eV, which led to a high open circuit voltage (Voc) and good air stability for photovoltaic application. Bulk heterojunction solar cells were fabricated with a structure of ITO/PEDOT-PSS/copolymers-PC70BM/LiF/Al by blending the copolymer with PC70BM. Both blend systems showed remarkably high Voc near 0.9 V, and the highest performance of 2.2% was obtained from PDNPADTBT, with Voc = 0.88 V, Jsc = 7.4 mA/cm2, and a fill factor of 34.4% under AM 1.5 G.}, keywords = {Conjugated structure, Cross‐coupling reaction, Polycondensation, Polymer solar cell}, pubstate = {published}, tppubtype = {article} } Two donor-acceptor alternating copolymers based on electron-rich triarylamine, di(1-(6-(2-ethylhexyl))naphthyl)phenylamine (DNPA), and electron-deficient benzothiadiazole and benzoselenadiazole derivatives were designed and synthesized via Suzuki coupling reaction. The resulting triarylamine-based alternating copolymers PDNPADTBT and PDNPADTBS showed good solubility in common organic solvents and good thermal stability. The optical band gaps determined from the onset absorption were 1.93 and 1.81 eV, respectively. By introducing the naphthalene ring into the triarylamine, copolymers had relatively deep HOMO energy levels of −5.48 and −5.45 eV, which led to a high open circuit voltage (Voc) and good air stability for photovoltaic application. Bulk heterojunction solar cells were fabricated with a structure of ITO/PEDOT-PSS/copolymers-PC70BM/LiF/Al by blending the copolymer with PC70BM. Both blend systems showed remarkably high Voc near 0.9 V, and the highest performance of 2.2% was obtained from PDNPADTBT, with Voc = 0.88 V, Jsc = 7.4 mA/cm2, and a fill factor of 34.4% under AM 1.5 G. |