2022 |
|
![]() | Lee, Kyoungmun; Lee, Hyun-Ro; Kim, Young Hun; Park, Jaemin; Cho, Suchan; Li, Sheng; Seo, Myungeun; Choi, Siyoung Q Microdroplet-mediated radical polymerization Journal Article ACS Cent. Sci., 8 (9), pp. 1265–1271, 2022, ISSN: 2374-7951. Abstract | BibTeX | Tags: Emulsion Free radical polymerization Interfaces RAFT polymerization @article{Choi2022, title = {Microdroplet-mediated radical polymerization}, author = {Kyoungmun Lee AND Hyun-Ro Lee AND Young Hun Kim AND Jaemin Park AND Suchan Cho AND Sheng Li AND Myungeun Seo AND Siyoung Q. Choi}, url = {https://pubs.acs.org/doi/10.1021/acscentsci.2c00694}, doi = {10.1021/acscentsci.2c00694}, issn = {2374-7951}, year = {2022}, date = {2022-08-12}, journal = {ACS Cent. Sci.}, volume = {8}, number = {9}, pages = {1265–1271}, abstract = {Micrometer-sized aqueous droplets serve as a unique reactor that drives various chemical reactions not seen in bulk solutions. However, their utilization has been limited to the synthesis of low molecular weight products at low reactant concentrations (nM to μM). Moreover, the nature of chemical reactions occurring outside the droplet remains unknown. This study demonstrated that oil-confined aqueous microdroplets continuously generated hydroxyl radicals near the interface and enabled the synthesis of polymers at high reactant concentrations (mM to M), thus successfully converting the interfacial energy into the synthesis of polymeric materials. The polymerized products maintained the properties of controlled radical polymerization, and a triblock copolymer with tapered interfaces was prepared by the sequential addition of different monomers into the aqueous microdroplets. Furthermore, a polymerization reaction in the continuous oil phase was effectively achieved by the transport of the hydroxyl radicals through the oil/water interface. This interfacial phenomenon is also successfully applied to the chain extension of a hydrophilic polymer with an oil-soluble monomer across the microdroplet interface. Our comprehensive study of radical polymerization using compartmentalization in microdroplets is expected to have important implications for the emerging field of microdroplet chemistry and polymerization in cellular biochemistry without any invasive chemical initiators.}, keywords = {Emulsion, Free radical polymerization, Interfaces, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } Micrometer-sized aqueous droplets serve as a unique reactor that drives various chemical reactions not seen in bulk solutions. However, their utilization has been limited to the synthesis of low molecular weight products at low reactant concentrations (nM to μM). Moreover, the nature of chemical reactions occurring outside the droplet remains unknown. This study demonstrated that oil-confined aqueous microdroplets continuously generated hydroxyl radicals near the interface and enabled the synthesis of polymers at high reactant concentrations (mM to M), thus successfully converting the interfacial energy into the synthesis of polymeric materials. The polymerized products maintained the properties of controlled radical polymerization, and a triblock copolymer with tapered interfaces was prepared by the sequential addition of different monomers into the aqueous microdroplets. Furthermore, a polymerization reaction in the continuous oil phase was effectively achieved by the transport of the hydroxyl radicals through the oil/water interface. This interfacial phenomenon is also successfully applied to the chain extension of a hydrophilic polymer with an oil-soluble monomer across the microdroplet interface. Our comprehensive study of radical polymerization using compartmentalization in microdroplets is expected to have important implications for the emerging field of microdroplet chemistry and polymerization in cellular biochemistry without any invasive chemical initiators. |
2021 |
|
![]() | Seo, Myungeun; Park, Jongmin 11,180,626, 2021. Abstract | BibTeX | Tags: Block polymer Diffusion Emulsion Hierarchical pore structure Macroporous Mesoporous PIMS Pore size control Porous polymer RAFT polymerization @patent{Park2021, title = {Method of preparing hierarchically porous polymers and hierarchically porous polymers prepared thereby}, author = {Myungeun Seo AND Jongmin Park}, year = {2021}, date = {2021-11-23}, number = {11,180,626}, location = {US}, abstract = {The present invention relates to a method of preparing a hierarchically porous polymer and a hierarchically porous polymer prepared thereby. The method comprises the steps of: (a) polymerizing an external oil phase of a high internal phase emulsion (HIPE) consisting aqueous droplets to produce a cross-linked block copolymer; (b) obtaining a macroporous polymer with interconnected macropores by removing the aqueous droplets; and (c) treating the obtained porous polymer with a base, thereby obtaining a hierarchically porous polymer having three-dimensional mesopores formed in the macroporous walls. According to the method, the macropore size and mesopore size of the hierarchically porous polymer can all be controlled. The hierarchically porous polymer prepared by the method can easily separate polymers having different sizes, and thus is highly useful in the polymer separation field.}, keywords = {Block polymer, Diffusion, Emulsion, Hierarchical pore structure, Macroporous, Mesoporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {patent} } The present invention relates to a method of preparing a hierarchically porous polymer and a hierarchically porous polymer prepared thereby. The method comprises the steps of: (a) polymerizing an external oil phase of a high internal phase emulsion (HIPE) consisting aqueous droplets to produce a cross-linked block copolymer; (b) obtaining a macroporous polymer with interconnected macropores by removing the aqueous droplets; and (c) treating the obtained porous polymer with a base, thereby obtaining a hierarchically porous polymer having three-dimensional mesopores formed in the macroporous walls. According to the method, the macropore size and mesopore size of the hierarchically porous polymer can all be controlled. The hierarchically porous polymer prepared by the method can easily separate polymers having different sizes, and thus is highly useful in the polymer separation field. |
2020 |
|
![]() | Seo, Myungeun; Park, Jongmin 10-2187683, 2020. BibTeX | Tags: Block polymer Diffusion Emulsion Hierarchical pore structure Macroporous Mesoporous PIMS Pore size control Porous polymer RAFT polymerization @patent{Seo2020d, title = {계층적 다공성 고분자의 제조방법 및 이로부터 제조된 계층적 다공성 고분자 (method of preparing hierarchically porous polymers and hierarchically porous polymers prepared thereby)}, author = {Myungeun Seo and Jongmin Park}, year = {2020}, date = {2020-12-01}, number = {10-2187683}, location = {KR}, keywords = {Block polymer, Diffusion, Emulsion, Hierarchical pore structure, Macroporous, Mesoporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {patent} } |
2018 |
|
![]() | Oh, Jaehoon; Seo, Myungeun 방사광 과학과 기술, 22-26 25 (3), 2018. BibTeX | Tags: Block polymer Diffusion Emulsion Microfluidics Permselectivity PIMS Pore size control Porous polymer RAFT polymerization @periodical{Oh2018b, title = {[밝은빛 이용 우수연구논문] 중합에 의해 유도되는 미세상분리을 이용한 나노다공성 고분자 마이크로캡슐의 제조 연구 (fabrication of nanoporous polymer microcapsules by polymerization-induced microphase separation)}, author = {Jaehoon Oh and Myungeun Seo}, year = {2018}, date = {2018-11-01}, issuetitle = {방사광 과학과 기술}, volume = {25}, number = {3}, series = {22-26}, keywords = {Block polymer, Diffusion, Emulsion, Microfluidics, Permselectivity, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {periodical} } |
![]() | Park, Jongmin; Kim, KyuHan; Seo, Myungeun Chem. Commun., 54 , pp. 7908-7911, 2018. Abstract | BibTeX | Tags: Block polymer Diffusion Emulsion Hierarchical pore structure Hyper-cross-linking Macroporous Mesoporous Microporous PIMS Pore size control Porous polymer RAFT polymerization @article{Park2018, title = {Hyper-cross-linked polymer with controlled multiscale porosity via polymerization-induced microphase separation within high internal phase emulsion}, author = {Jongmin Park and KyuHan Kim and Myungeun Seo}, url = {https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc03508c#!divAbstract}, year = {2018}, date = {2018-06-20}, journal = {Chem. Commun.}, volume = {54}, pages = {7908-7911}, abstract = {We report the preparation of hierarchically porous polymers containing fully interconnected and controlled micro-, meso-, and macropores, where a hyper-cross-linked microporous polymer skeleton forms a reticulating mesoporous wall that supports a highly porous macropore framework. These materials provide high specific surface area and >90% porosity, useful for rapid sorption of organic molecules.}, keywords = {Block polymer, Diffusion, Emulsion, Hierarchical pore structure, Hyper-cross-linking, Macroporous, Mesoporous, Microporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } We report the preparation of hierarchically porous polymers containing fully interconnected and controlled micro-, meso-, and macropores, where a hyper-cross-linked microporous polymer skeleton forms a reticulating mesoporous wall that supports a highly porous macropore framework. These materials provide high specific surface area and >90% porosity, useful for rapid sorption of organic molecules. |
![]() | Oh, Jaehoon; Kim, Bomi; Lee, Sangmin; Kim, Shin-Hyun; Seo, Myungeun Semipermeable microcapsules with a block polymer-templated nanoporous membrane Journal Article Chem. Mater. , 30 , pp. 273-279, 2018. Abstract | BibTeX | Tags: Block polymer Diffusion Emulsion Mesoporous Microfluidics Permselectivity PIMS Pore size control Porous polymer RAFT polymerization @article{Oh2018, title = {Semipermeable microcapsules with a block polymer-templated nanoporous membrane}, author = {Jaehoon Oh and Bomi Kim and Sangmin Lee and Shin-Hyun Kim and Myungeun Seo}, url = {https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.7b04340}, year = {2018}, date = {2018-01-09}, journal = {Chem. Mater. }, volume = {30}, pages = {273-279}, abstract = {Microcapsules with nanoporous membranes can regulate transmembrane transport in a size-dependent fashion while protecting active materials in the core from the surrounding, and are thereby useful as artificial cell models, carriers for cells and catalysts, and microsensors. In this work, we report a pragmatic microfluidic approach to producing such semipermeable microcapsules with precise control of the cutoff threshold of permeation. Using a homogeneous polymerization mixture for the polymerization-induced microphase separation (PIMS) process as the oil phase of water-in-oil-in-water (W/O/W) double emulsions, a densely cross-linked shell composed of a bicontinuous nanostructure that percolates through the entire thickness is prepared, which serves as a template for a monolithic nanoporous membrane of microcapsules with size-selective permeability. We demonstrate that the nanopores with precisely controlled size by the block polymer self-assembly govern molecular diffusion through the membrane and render manipulation of the cutoff threshold.}, keywords = {Block polymer, Diffusion, Emulsion, Mesoporous, Microfluidics, Permselectivity, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } Microcapsules with nanoporous membranes can regulate transmembrane transport in a size-dependent fashion while protecting active materials in the core from the surrounding, and are thereby useful as artificial cell models, carriers for cells and catalysts, and microsensors. In this work, we report a pragmatic microfluidic approach to producing such semipermeable microcapsules with precise control of the cutoff threshold of permeation. Using a homogeneous polymerization mixture for the polymerization-induced microphase separation (PIMS) process as the oil phase of water-in-oil-in-water (W/O/W) double emulsions, a densely cross-linked shell composed of a bicontinuous nanostructure that percolates through the entire thickness is prepared, which serves as a template for a monolithic nanoporous membrane of microcapsules with size-selective permeability. We demonstrate that the nanopores with precisely controlled size by the block polymer self-assembly govern molecular diffusion through the membrane and render manipulation of the cutoff threshold. |