2020 |
|
![]() | Lee, Suhyeon; Jeong, Rokam; Seo, Myungeun; Lee, Hee-Seung Double-activated nucleophilic aromatic substitution polymerization by bis-ortho-trifluoromethyl groups to soluble para-poly(biphenylene oxide) Journal Article Polymer, 118 , pp. 122124, 2020. Abstract | BibTeX | Tags: Poly(arylene ether) Polycondensation SNAr reaction @article{Lee2020, title = {Double-activated nucleophilic aromatic substitution polymerization by bis-ortho-trifluoromethyl groups to soluble para-poly(biphenylene oxide)}, author = {Suhyeon Lee and Rokam Jeong and Myungeun Seo and Hee-Seung Lee}, year = {2020}, date = {2020-02-03}, journal = {Polymer}, volume = {118}, pages = {122124}, abstract = {Poly(biphenylene oxide)s (PBPOs) containing two pendent trifluoromethyl groups were synthesized from AB-type monomers, 4ʹ-hydroxy-4-fluoro-3,5-bis(trifluoromethyl)biphenyl and its 3ʹ-hydroxyl isomer. The displacement reaction of fluorine leaving group activated by the two trifluoromethyl groups at the ortho-positions produced high-molecular-weight polymers with Mn up to 101,000 g/mol, indicating the nucleophilic aromatic substitution reaction proceeded effectively. PBPOs with para-, meta-, and mixed ether linkages were obtained and well characterized by FTIR and 1H/19F NMR spectroscopies. All PBPOs were amorphous and soluble in a wide range of organic solvents, and exhibited even more enhanced thermal stability than the previously reported two meta-trifluoromethyl substituted analogues. Increasing the para-linkage fraction in the polymer generally improved solubility and increased Tg in contrast to the meta-trifluoromethyl case, where para-linked polymer was poorly soluble and semicrystalline. This suggests that the ortho-trifluoromethyl substituents are more effective for the synthesis of para-linked PBPOs. They also showed low refractive indices and birefringence values.}, keywords = {Poly(arylene ether), Polycondensation, SNAr reaction}, pubstate = {published}, tppubtype = {article} } Poly(biphenylene oxide)s (PBPOs) containing two pendent trifluoromethyl groups were synthesized from AB-type monomers, 4ʹ-hydroxy-4-fluoro-3,5-bis(trifluoromethyl)biphenyl and its 3ʹ-hydroxyl isomer. The displacement reaction of fluorine leaving group activated by the two trifluoromethyl groups at the ortho-positions produced high-molecular-weight polymers with Mn up to 101,000 g/mol, indicating the nucleophilic aromatic substitution reaction proceeded effectively. PBPOs with para-, meta-, and mixed ether linkages were obtained and well characterized by FTIR and 1H/19F NMR spectroscopies. All PBPOs were amorphous and soluble in a wide range of organic solvents, and exhibited even more enhanced thermal stability than the previously reported two meta-trifluoromethyl substituted analogues. Increasing the para-linkage fraction in the polymer generally improved solubility and increased Tg in contrast to the meta-trifluoromethyl case, where para-linked polymer was poorly soluble and semicrystalline. This suggests that the ortho-trifluoromethyl substituents are more effective for the synthesis of para-linked PBPOs. They also showed low refractive indices and birefringence values. |
2019 |
|
![]() | Lee, Jinhee; Park, Jongmin; Oh, Jaehoon; Lee, Sanghwa; Kim, Sang Youl; Seo, Myungeun Nanoporous poly(ether sulfone) from polylactide-b-poly(ether sulfone)-b-polylactide precursor Journal Article Polymer, 180 , pp. 121704, 2019. Abstract | BibTeX | Tags: Block polymer Microphase separation Poly(arylene ether) Porous polymer ROP SNAr reaction @article{Lee2019b, title = {Nanoporous poly(ether sulfone) from polylactide-b-poly(ether sulfone)-b-polylactide precursor}, author = {Jinhee Lee and Jongmin Park and Jaehoon Oh and Sanghwa Lee and Sang Youl Kim and Myungeun Seo}, year = {2019}, date = {2019-10-10}, journal = {Polymer}, volume = {180}, pages = {121704}, abstract = {We report a route to synthesize polylactide-b-poly(ether sulfone)-b-polylactide (PLA-b-PES-b-PLA) containing PES and PLA, which provide a mechanically robust framework and a sacrificial template for pore formation, respectively. High-molar mass PES terminated with fluorine groups was synthesized by the step-growth nucleophilic aromatic substitution (SNAr) reaction, and the chain ends were transformed into benzylic hydroxyl groups by chain end modification. Growth of the PLA using the hydroxyl groups as initiating sites via chain-growth ring opening transesterification polymerization (ROTEP) produced the target triblock copolymer. Although the step-growth polymerization produced a PES middle block with high dispersity, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) analyses indicated the formation of an ordered lamellar morphology. We further demonstrated that a nanoporous PES with slit-like pores could be obtained by selective removal of the PLA.}, keywords = {Block polymer, Microphase separation, Poly(arylene ether), Porous polymer, ROP, SNAr reaction}, pubstate = {published}, tppubtype = {article} } We report a route to synthesize polylactide-b-poly(ether sulfone)-b-polylactide (PLA-b-PES-b-PLA) containing PES and PLA, which provide a mechanically robust framework and a sacrificial template for pore formation, respectively. High-molar mass PES terminated with fluorine groups was synthesized by the step-growth nucleophilic aromatic substitution (SNAr) reaction, and the chain ends were transformed into benzylic hydroxyl groups by chain end modification. Growth of the PLA using the hydroxyl groups as initiating sites via chain-growth ring opening transesterification polymerization (ROTEP) produced the target triblock copolymer. Although the step-growth polymerization produced a PES middle block with high dispersity, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) analyses indicated the formation of an ordered lamellar morphology. We further demonstrated that a nanoporous PES with slit-like pores could be obtained by selective removal of the PLA. |
![]() | Lee, Jinhee; Park, Jongmin; Seo, Myungeun Well-defined poly(ether sulfone)-b-polylactide: synthesis and microphase separation behavior Journal Article Polym. J., 52 , pp. 111-118, 2019, (Invited Paper to a Special Issue “Precision Polymer Synthesis”). Abstract | BibTeX | Tags: Block polymer CGCP Microphase separation Poly(arylene ether) ROP SNAr reaction @article{Lee2019c, title = {Well-defined poly(ether sulfone)-b-polylactide: synthesis and microphase separation behavior}, author = {Jinhee Lee and Jongmin Park and Myungeun Seo}, year = {2019}, date = {2019-09-26}, journal = {Polym. J.}, volume = {52}, pages = {111-118}, abstract = {We investigated the microphase separation behavior of well-defined poly(arylene ether sulfone)-b-polylactide (PES-b-PLA) diblock copolymers. PES was synthesized by the nucleophilic aromatic substitution polymerization of 4-fluoro-4′-hydroxydiphenyl sulfone potassium salt in the presence of an allyl-functionalized initiator, which follows a chain growth condensation polymerization mechanism. A hydroxyl group installed via a thiol-ene reaction was utilized as the initiating site for the ring opening polymerization of d,l-lactide, producing the target polymer. The polymers were further purified by preparative size-exclusion chromatography and analyzed by small-angle X-ray scattering with temperature variations from room temperature to 150 °C. The PES block was glassy in the employed temperature range, but the PLA chains provided sufficient mobility for ordering of the block copolymer when PES was the minor fraction. An order-disorder transition (ODT) with changing temperature could not be located because PLA was not stable above 170 °C. From the degree of polymerization values of the polymers near the ODT, the Flory–Huggins interaction parameter, χ, could be roughly estimated as 0.12 at 150 °C. This high χ value suggests that engineering plastic-containing block copolymers could be useful in advanced lithographic and filtration applications. }, note = {Invited Paper to a Special Issue “Precision Polymer Synthesis”}, keywords = {Block polymer, CGCP, Microphase separation, Poly(arylene ether), ROP, SNAr reaction}, pubstate = {published}, tppubtype = {article} } We investigated the microphase separation behavior of well-defined poly(arylene ether sulfone)-b-polylactide (PES-b-PLA) diblock copolymers. PES was synthesized by the nucleophilic aromatic substitution polymerization of 4-fluoro-4′-hydroxydiphenyl sulfone potassium salt in the presence of an allyl-functionalized initiator, which follows a chain growth condensation polymerization mechanism. A hydroxyl group installed via a thiol-ene reaction was utilized as the initiating site for the ring opening polymerization of d,l-lactide, producing the target polymer. The polymers were further purified by preparative size-exclusion chromatography and analyzed by small-angle X-ray scattering with temperature variations from room temperature to 150 °C. The PES block was glassy in the employed temperature range, but the PLA chains provided sufficient mobility for ordering of the block copolymer when PES was the minor fraction. An order-disorder transition (ODT) with changing temperature could not be located because PLA was not stable above 170 °C. From the degree of polymerization values of the polymers near the ODT, the Flory–Huggins interaction parameter, χ, could be roughly estimated as 0.12 at 150 °C. This high χ value suggests that engineering plastic-containing block copolymers could be useful in advanced lithographic and filtration applications. |
2018 |
|
![]() | Lee, Jinhee; Lee, Byungyong; Park, Jeyoung; Oh, Jaehoon; Kim, Taehyoung; Seo, Myungeun; Kim, Sang Youl Polymer, 153 , pp. 430-437 , 2018. Abstract | BibTeX | Tags: CGCP LCST Poly(arylene ether) @article{Lee2018, title = {Synthesis and phase transition behavior of well-defined poly(arylene ether sulfone)s by chain growth condensation polymerization in organic media}, author = {Jinhee Lee and Byungyong Lee and Jeyoung Park and Jaehoon Oh and Taehyoung Kim and Myungeun Seo and Sang Youl Kim}, year = {2018}, date = {2018-09-26}, journal = {Polymer}, volume = {153}, pages = {430-437 }, abstract = {A series of well-defined poly(arylene ether sulfone)s (PESs) as a rod-type block was synthesized by chain-growth condensation polymerization from a diphenyl sulfone-type initiator containing a fluorine leaving group and an allyl moiety. Interestingly, these oligomeric PESs exhibited lower critical solution temperature (LCST)-type phase transition behavior in organic solvents, i.e., 1,2-dimethoxyethane (DME) and chloroform. The clouding point temperature was affected by the molecular weight and concentration of the polymers. The cloud temperature decreased as the molecular weight polymers and the concentration of polymer solution increased. And also two series of rod-coil type poly(arylene ether sulfone)-b-polylactides were synthesized by controlled ring-opening esterification polymerization of dl-lactide with a PES-derived macroinitiator in which the allyl group was transformed into an aliphatic hydroxyl group by a thiol-ene click reaction. These diblock copolymers also exhibited LCST behavior in DME, and the nanoscale size of the aggregates increased upon heating.}, keywords = {CGCP, LCST, Poly(arylene ether)}, pubstate = {published}, tppubtype = {article} } A series of well-defined poly(arylene ether sulfone)s (PESs) as a rod-type block was synthesized by chain-growth condensation polymerization from a diphenyl sulfone-type initiator containing a fluorine leaving group and an allyl moiety. Interestingly, these oligomeric PESs exhibited lower critical solution temperature (LCST)-type phase transition behavior in organic solvents, i.e., 1,2-dimethoxyethane (DME) and chloroform. The clouding point temperature was affected by the molecular weight and concentration of the polymers. The cloud temperature decreased as the molecular weight polymers and the concentration of polymer solution increased. And also two series of rod-coil type poly(arylene ether sulfone)-b-polylactides were synthesized by controlled ring-opening esterification polymerization of dl-lactide with a PES-derived macroinitiator in which the allyl group was transformed into an aliphatic hydroxyl group by a thiol-ene click reaction. These diblock copolymers also exhibited LCST behavior in DME, and the nanoscale size of the aggregates increased upon heating. |
![]() | Hoang, Nhung T T; Lee, Jinhee; Lee, Byungyong; Kim, Hae-Young; Lee, Jungeun; Nguyen, Truc Ly; Seo, Myungeun; Kim, Sang Youl; Kim, Byung-Kwon Observing phase transition of a temperature-responsive polymer using electrochemical collisions on an ultramicroelectrode Journal Article Anal. Chem., 90 , pp. 7261-7266, 2018. Abstract | BibTeX | Tags: CGCP Electrochemistry LCST Poly(arylene ether) Polymer particle @article{Hoang2018, title = {Observing phase transition of a temperature-responsive polymer using electrochemical collisions on an ultramicroelectrode}, author = {Nhung T. T. Hoang and Jinhee Lee and Byungyong Lee and Hae-Young Kim and Jungeun Lee and Truc Ly Nguyen and Myungeun Seo and Sang Youl Kim and Byung-Kwon Kim}, url = {https://pubs.acs.org/doi/10.1021/acs.analchem.8b00437}, year = {2018}, date = {2018-05-31}, journal = {Anal. Chem.}, volume = {90}, pages = {7261-7266}, abstract = {Herein, a study on a new lower critical solution temperature (LCST) polymer in an organic solvent by an electrochemical technique has been reported. The phase-transition behavior of poly(arylene ether sulfone) (PAES) was examined on 1,2-dimethoxyethane (DME). At a temperature above the LCST point, polymer molecules aggregated to create polymer droplets. These droplets subsequently collided with an ultramicroelectrode (UME), resulting in a new form of staircase current decrease. The experimental collision frequency and collision signal were analyzed in relation to the concentration of the polymer. In addition, the degree of polymer aggregation associated with temperature change was also observed.}, keywords = {CGCP, Electrochemistry, LCST, Poly(arylene ether), Polymer particle}, pubstate = {published}, tppubtype = {article} } Herein, a study on a new lower critical solution temperature (LCST) polymer in an organic solvent by an electrochemical technique has been reported. The phase-transition behavior of poly(arylene ether sulfone) (PAES) was examined on 1,2-dimethoxyethane (DME). At a temperature above the LCST point, polymer molecules aggregated to create polymer droplets. These droplets subsequently collided with an ultramicroelectrode (UME), resulting in a new form of staircase current decrease. The experimental collision frequency and collision signal were analyzed in relation to the concentration of the polymer. In addition, the degree of polymer aggregation associated with temperature change was also observed. |
2017 |
|
![]() | Seo, Myungeun; Lee, Jinhee; Kim, Sang Youl 10-1709020, 2017. Abstract | BibTeX | Tags: Block polymer High performance polymer Microphase separation Poly(arylene ether) Polycondensation Polymer membrane Porous polymer ROP @patent{Seo2017, title = {한외여과막용 블록공중합체 및 이의 제조방법 (block copolymer for ultrafiltration membrane and method of preparing the same)}, author = {Myungeun Seo and Jinhee Lee and Sang Youl Kim}, year = {2017}, date = {2017-02-21}, number = {10-1709020}, abstract = {본 발명은 블록 공중합체 자기조립을 응용하여 세공 크기가 정밀하게 조절된 다공성 고분자막을 제조할 수 있는 한외여과막용 블록공중합체 및 이의 제조방법에 관한 것이다. 본 발명의 블록공중합체는 블록공중합체를 형성하는 고분자들의 분자량과 함량을 조절하여 세공 크기와 분포를 정밀하게 제어할 수 있으며, 또한, 현재 한외여과막으로 사용되고 있는 폴리이서술폰을 기본 소재로 사용하고 있어 기계적 물성이 우수하다. 본 발명은 현재 한외여과 분리막에 쓰이고 있는 폴리이서술폰을 포함하는 블록 공중합체를 합성하고 이에 기반한 나노다공성 고분자 제조 기술 개발을 통해 차세대 한외여과용 나노다공성 여과막을 구현하였으며, 기존의 상반전법을 통한 폴리이서술폰 한외여과 분리막 제조공정을 적용할 수 있어 평판 분리막 또는 중공사막 분리막으로 쉽게 가공할 수 있으므로 높은 산업적 응용 가치를 가진다.}, keywords = {Block polymer, High performance polymer, Microphase separation, Poly(arylene ether), Polycondensation, Polymer membrane, Porous polymer, ROP}, pubstate = {published}, tppubtype = {patent} } 본 발명은 블록 공중합체 자기조립을 응용하여 세공 크기가 정밀하게 조절된 다공성 고분자막을 제조할 수 있는 한외여과막용 블록공중합체 및 이의 제조방법에 관한 것이다. 본 발명의 블록공중합체는 블록공중합체를 형성하는 고분자들의 분자량과 함량을 조절하여 세공 크기와 분포를 정밀하게 제어할 수 있으며, 또한, 현재 한외여과막으로 사용되고 있는 폴리이서술폰을 기본 소재로 사용하고 있어 기계적 물성이 우수하다. 본 발명은 현재 한외여과 분리막에 쓰이고 있는 폴리이서술폰을 포함하는 블록 공중합체를 합성하고 이에 기반한 나노다공성 고분자 제조 기술 개발을 통해 차세대 한외여과용 나노다공성 여과막을 구현하였으며, 기존의 상반전법을 통한 폴리이서술폰 한외여과 분리막 제조공정을 적용할 수 있어 평판 분리막 또는 중공사막 분리막으로 쉽게 가공할 수 있으므로 높은 산업적 응용 가치를 가진다. |
2015 |
|
![]() | Park, Jeyoung; Park, Changjun; Yim, Byoung Tak; Seo, Myungeun; Kim, Sang Youl Synthesis and self-assembly of partially sulfonated poly(arylene ether sulfone)s and their role in the formation of Cu2S nanowires Journal Article RSC Adv., 5 , pp. 53611-53617, 2015. Abstract | BibTeX | Tags: Poly(arylene ether) Self-assembly Sulfonation @article{Park2015b, title = {Synthesis and self-assembly of partially sulfonated poly(arylene ether sulfone)s and their role in the formation of Cu2S nanowires}, author = {Jeyoung Park and Changjun Park and Byoung Tak Yim and Myungeun Seo and Sang Youl Kim}, url = {https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra05563f#!divAbstract}, year = {2015}, date = {2015-06-10}, journal = {RSC Adv.}, volume = {5}, pages = {53611-53617}, abstract = {Partially sulfonated amphiphilic poly(arylene ether sulfone)s (PSPAESs) were synthesized by one-step nucleophilic aromatic substitution copolymerization. A 4-fluoro-4′-hydroxydiphenyl sulfone potassium salt was used as a hydrophobic monomer, and 5-((4-fluorophenyl)sulfonyl)-2-hydroxybenzenesulfonic acid as a hydrophilic monomer bearing a sulfonic acid group was synthesized from the hydrophobic monomer via selective sulfonation. 1H and 13C nuclear magnetic resonance spectroscopy analysis of PSPAESs indicated formation of statistical amphiphilic copolymers with control over the degree of sulfonation by varying the feed. Dynamic light scattering and transmission electron microscopy analysis indicated that PSPAESs self-assembled into spherical micelles in aqueous solutions. Interestingly, the micellar solution of PSPAESs prepared by dialysis was found to grow Cu2S nanowires on a Cu grid under ambient conditions. Formation of Cu2S nanowires on various substrates including a Si wafer and graphene was demonstrated in the presence of Cu and a sulfur source. UV-vis spectroscopy and X-ray photoelectron spectroscopy data suggests PSPAESs assist dissolution of metallic Cu into Cu(II) enabling the formation of Cu2S nanowires.}, keywords = {Poly(arylene ether), Self-assembly, Sulfonation}, pubstate = {published}, tppubtype = {article} } Partially sulfonated amphiphilic poly(arylene ether sulfone)s (PSPAESs) were synthesized by one-step nucleophilic aromatic substitution copolymerization. A 4-fluoro-4′-hydroxydiphenyl sulfone potassium salt was used as a hydrophobic monomer, and 5-((4-fluorophenyl)sulfonyl)-2-hydroxybenzenesulfonic acid as a hydrophilic monomer bearing a sulfonic acid group was synthesized from the hydrophobic monomer via selective sulfonation. 1H and 13C nuclear magnetic resonance spectroscopy analysis of PSPAESs indicated formation of statistical amphiphilic copolymers with control over the degree of sulfonation by varying the feed. Dynamic light scattering and transmission electron microscopy analysis indicated that PSPAESs self-assembled into spherical micelles in aqueous solutions. Interestingly, the micellar solution of PSPAESs prepared by dialysis was found to grow Cu2S nanowires on a Cu grid under ambient conditions. Formation of Cu2S nanowires on various substrates including a Si wafer and graphene was demonstrated in the presence of Cu and a sulfur source. UV-vis spectroscopy and X-ray photoelectron spectroscopy data suggests PSPAESs assist dissolution of metallic Cu into Cu(II) enabling the formation of Cu2S nanowires. |
2014 |
|
![]() | Lee, Jinhee; Heo, Jaewon; Park, Changjun; Kim, Byung-Kwon; Kwak, Juhyoun; Seo, Myungeun; Kim, Sang Youl Synthesis of triarylamine-containing poly(arylene ether)s by nucleophilic aromatic substitution reaction Journal Article J. Polym. Sci. Part A: Polym. Chem., 52 , pp. 2692-2702, 2014. Abstract | BibTeX | Tags: High performance polymer Poly(arylene ether) Polycondensation SNAr reaction @article{Lee2014, title = {Synthesis of triarylamine-containing poly(arylene ether)s by nucleophilic aromatic substitution reaction}, author = {Jinhee Lee and Jaewon Heo and Changjun Park and Byung-Kwon Kim and Juhyoun Kwak and Myungeun Seo and Sang Youl Kim}, url = {https://doi.org/10.1002/pola.27289}, year = {2014}, date = {2014-07-03}, journal = {J. Polym. Sci. Part A: Polym. Chem.}, volume = {52}, pages = {2692-2702}, abstract = {We report synthesis of a series of new triarylamine‐containing AB‐type monomers and their polymers via nucleophilic aromatic substitution (SNAr) reaction. Monomers consisting of a hydroxyl group at the para position of the nitrogen group in one phenyl ring and a fluorine leaving group at the para position in another phenyl ring were synthesized via palladium‐catalyzed amination reaction. The fluorine leaving group was activated by trifluoromethyl group at the ortho position and an electron‐withdrawing group (EWG) introduced at the para position of the unsubstituted phenyl ring that enabled control over monomer reactivity. SNAr reaction of the monomers successfully produced corresponding poly(arylene ether)s with pendant EWGs that exhibited good solubility and thermal stability. Optical and electrochemical properties of the polymers were also affected by incorporation of EWGs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2692‐2702}, keywords = {High performance polymer, Poly(arylene ether), Polycondensation, SNAr reaction}, pubstate = {published}, tppubtype = {article} } We report synthesis of a series of new triarylamine‐containing AB‐type monomers and their polymers via nucleophilic aromatic substitution (SNAr) reaction. Monomers consisting of a hydroxyl group at the para position of the nitrogen group in one phenyl ring and a fluorine leaving group at the para position in another phenyl ring were synthesized via palladium‐catalyzed amination reaction. The fluorine leaving group was activated by trifluoromethyl group at the ortho position and an electron‐withdrawing group (EWG) introduced at the para position of the unsubstituted phenyl ring that enabled control over monomer reactivity. SNAr reaction of the monomers successfully produced corresponding poly(arylene ether)s with pendant EWGs that exhibited good solubility and thermal stability. Optical and electrochemical properties of the polymers were also affected by incorporation of EWGs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2692‐2702 |