@article{Hwang2020,
title = {Synthesis of in situ microphase-separated organic–inorganic block polymer precursors to 3D-continuous mesoporous SiC-based ceramic monoliths},
author = {Yoon-Ho Hwang and Jaehoon Oh and Hyungju Ahn and Dong-Pyo Kim and Myungeun Seo},
year = {2020},
date = {2020-06-05},
journal = {ACS Appl. Polym. Mater.},
volume = {2},
number = {7},
pages = {2802–2809},
abstract = {Mesoporous nonoxide ceramics are attractive for applications such as catalytic supporters and separations with exceptional thermochemical stability. Here we report on the one-step preparation of microphase-separated bicontinuous organic–inorganic polymer precursors for forming 3D continuous polymer-derived ceramic monoliths without an external block copolymer template and annealing steps. We combined polymerization-induced phase separation with in situ hybrid block polymer formation from a mixture of a preceramic monomer, a cross-linker, and a thermally decomposable organic segment containing a terminal chain transfer agent. The resultant cross-linked polymeric monoliths, moldable to any desired shape, were converted to 3D-continuous mesoporous silicon carbonitride ceramics with a pore size in the 3–11 nm range and a surface area of 107–410 m2 g–1 by varying the molar mass of the sacrificial organic block and the pyrolytic temperature. The 3D-disordered pore structure is beneficial for retaining the monolithic shape via isotropic shrinkage during ceramization. The distinctive characteristics of this synthetic approach, which are the absence of a solvent, a structure-directing block copolymer, and an annealing process, are affordable for the large production of nanoporous ceramic monoliths for various high-temperature applications and should be applicable for additive manufacturing with direct polymerizability for the fabrication of hierarchically porous materials in complex shapes with dimensional scalability.},
note = {selected as a Supplementary Cover},
keywords = {Block polymer, Ceramics, Mesoporous, PIMS, RAFT polymerization},
pubstate = {published},
tppubtype = {article}
}
Mesoporous nonoxide ceramics are attractive for applications such as catalytic supporters and separations with exceptional thermochemical stability. Here we report on the one-step preparation of microphase-separated bicontinuous organic–inorganic polymer precursors for forming 3D continuous polymer-derived ceramic monoliths without an external block copolymer template and annealing steps. We combined polymerization-induced phase separation with in situ hybrid block polymer formation from a mixture of a preceramic monomer, a cross-linker, and a thermally decomposable organic segment containing a terminal chain transfer agent. The resultant cross-linked polymeric monoliths, moldable to any desired shape, were converted to 3D-continuous mesoporous silicon carbonitride ceramics with a pore size in the 3–11 nm range and a surface area of 107–410 m2 g–1 by varying the molar mass of the sacrificial organic block and the pyrolytic temperature. The 3D-disordered pore structure is beneficial for retaining the monolithic shape via isotropic shrinkage during ceramization. The distinctive characteristics of this synthetic approach, which are the absence of a solvent, a structure-directing block copolymer, and an annealing process, are affordable for the large production of nanoporous ceramic monoliths for various high-temperature applications and should be applicable for additive manufacturing with direct polymerizability for the fabrication of hierarchically porous materials in complex shapes with dimensional scalability.