2024 |
|
![]() | Yoon, Jun Hyok; Kim, Taehyoung; Seo, Myungeun; Kim, Sang Youl Synthesis and thermo-responsive behavior of poly(N-isopropylacrylamide)-b-poly(N-vinylisobutyramide) diblock copolymer Journal Article Polymers, 16 (6), pp. 830, 2024, ISBN: 2073-4360. Abstract | BibTeX | Tags: Block polymer LCST RAFT polymerization Thermoresponsive polymers @article{Kim2024b, title = {Synthesis and thermo-responsive behavior of poly(N-isopropylacrylamide)-b-poly(N-vinylisobutyramide) diblock copolymer}, author = {Jun Hyok Yoon AND Taehyoung Kim AND Myungeun Seo AND Sang Youl Kim}, url = {https://www.mdpi.com/2073-4360/16/6/830}, doi = {10.3390/polym16060830}, isbn = {2073-4360}, year = {2024}, date = {2024-03-18}, journal = {Polymers}, volume = {16}, number = {6}, pages = {830}, abstract = {Thermo-responsive diblock copolymer, poly(N-isopropylacrylamide)-block-poly(N-vinylisobutyramide) was synthesized via switchable reversible addition–fragmentation chain transfer (RAFT) polymerization and its thermal transition behavior was studied. Poly(N-vinylisobutyramide) (PNVIBA), a structural isomer of poly(N-isopropylacrylamide) (PNIPAM) shows a thermo-response character but with a higher lower critical solution temperature (LCST) than PNIPAM. The chain extension of the PNVIBA block from the PNIPAM block proceeded in a controlled manner with a switchable chain transfer reagent, methyl 2-[methyl(4-pyridinyl)carbamothioylthio]propionate. In an aqueous solution, the diblock copolymer shows a thermo-responsive behavior but with a single LCST close to the LCST of PNVIBA, indicating that the interaction between the PNIPAM segment and the PNVIBA segment leads to cooperative aggregation during the self-assembly induced phase separation of the diblock copolymer in solution. Above the LCST of the PNIPAM block, the polymer chains begin to collapse, forming small aggregates, but further aggregation stumbled due to the PNVIBA segment of the diblock copolymer. However, as the temperature approached the LCST of the PNVIBA block, larger aggregates composed of clusters of small aggregates formed, resulting in an opaque solution.}, keywords = {Block polymer, LCST, RAFT polymerization, Thermoresponsive polymers}, pubstate = {published}, tppubtype = {article} } Thermo-responsive diblock copolymer, poly(N-isopropylacrylamide)-block-poly(N-vinylisobutyramide) was synthesized via switchable reversible addition–fragmentation chain transfer (RAFT) polymerization and its thermal transition behavior was studied. Poly(N-vinylisobutyramide) (PNVIBA), a structural isomer of poly(N-isopropylacrylamide) (PNIPAM) shows a thermo-response character but with a higher lower critical solution temperature (LCST) than PNIPAM. The chain extension of the PNVIBA block from the PNIPAM block proceeded in a controlled manner with a switchable chain transfer reagent, methyl 2-[methyl(4-pyridinyl)carbamothioylthio]propionate. In an aqueous solution, the diblock copolymer shows a thermo-responsive behavior but with a single LCST close to the LCST of PNVIBA, indicating that the interaction between the PNIPAM segment and the PNVIBA segment leads to cooperative aggregation during the self-assembly induced phase separation of the diblock copolymer in solution. Above the LCST of the PNIPAM block, the polymer chains begin to collapse, forming small aggregates, but further aggregation stumbled due to the PNVIBA segment of the diblock copolymer. However, as the temperature approached the LCST of the PNVIBA block, larger aggregates composed of clusters of small aggregates formed, resulting in an opaque solution. |
2020 |
|
![]() | Kim, Byung Kwon; Kim, Hae Young; Hoang, Thi Tuyet Nhung; Lee, Jung Eun; Kim, Sang Youl; Seo, Myungeun; Lee, Jinhee; Lee, Byongyong 10-2192043, 2020. Abstract | BibTeX | Tags: Electrochemistry LCST Polymer particle @patent{Kim2020, title = {온도감응성 고분자의 상전이 측정방법 및 온도감응성 고분자의 상전이 측정장치 (a method for measuring phase transition of temperature sensitive polymers and a device for measuring concentration)/ }, author = {Byung Kwon Kim AND Hae Young Kim AND Thi Tuyet Nhung Hoang AND Jung Eun Lee AND Sang Youl Kim AND Myungeun Seo AND Jinhee Lee AND Byongyong Lee}, year = {2020}, date = {2020-12-10}, number = {10-2192043}, location = {KR}, abstract = {본 발명은 온도감응성 고분자의 상전이 측정방법 및 온도감응성 고분자의 상전이 측정장치에 관한 것이다.}, keywords = {Electrochemistry, LCST, Polymer particle}, pubstate = {published}, tppubtype = {patent} } 본 발명은 온도감응성 고분자의 상전이 측정방법 및 온도감응성 고분자의 상전이 측정장치에 관한 것이다. |
2018 |
|
![]() | Lee, Jinhee; Lee, Byungyong; Park, Jeyoung; Oh, Jaehoon; Kim, Taehyoung; Seo, Myungeun; Kim, Sang Youl Polymer, 153 , pp. 430-437 , 2018. Abstract | BibTeX | Tags: CGCP LCST Poly(arylene ether) @article{Lee2018, title = {Synthesis and phase transition behavior of well-defined poly(arylene ether sulfone)s by chain growth condensation polymerization in organic media}, author = {Jinhee Lee and Byungyong Lee and Jeyoung Park and Jaehoon Oh and Taehyoung Kim and Myungeun Seo and Sang Youl Kim}, year = {2018}, date = {2018-09-26}, journal = {Polymer}, volume = {153}, pages = {430-437 }, abstract = {A series of well-defined poly(arylene ether sulfone)s (PESs) as a rod-type block was synthesized by chain-growth condensation polymerization from a diphenyl sulfone-type initiator containing a fluorine leaving group and an allyl moiety. Interestingly, these oligomeric PESs exhibited lower critical solution temperature (LCST)-type phase transition behavior in organic solvents, i.e., 1,2-dimethoxyethane (DME) and chloroform. The clouding point temperature was affected by the molecular weight and concentration of the polymers. The cloud temperature decreased as the molecular weight polymers and the concentration of polymer solution increased. And also two series of rod-coil type poly(arylene ether sulfone)-b-polylactides were synthesized by controlled ring-opening esterification polymerization of dl-lactide with a PES-derived macroinitiator in which the allyl group was transformed into an aliphatic hydroxyl group by a thiol-ene click reaction. These diblock copolymers also exhibited LCST behavior in DME, and the nanoscale size of the aggregates increased upon heating.}, keywords = {CGCP, LCST, Poly(arylene ether)}, pubstate = {published}, tppubtype = {article} } A series of well-defined poly(arylene ether sulfone)s (PESs) as a rod-type block was synthesized by chain-growth condensation polymerization from a diphenyl sulfone-type initiator containing a fluorine leaving group and an allyl moiety. Interestingly, these oligomeric PESs exhibited lower critical solution temperature (LCST)-type phase transition behavior in organic solvents, i.e., 1,2-dimethoxyethane (DME) and chloroform. The clouding point temperature was affected by the molecular weight and concentration of the polymers. The cloud temperature decreased as the molecular weight polymers and the concentration of polymer solution increased. And also two series of rod-coil type poly(arylene ether sulfone)-b-polylactides were synthesized by controlled ring-opening esterification polymerization of dl-lactide with a PES-derived macroinitiator in which the allyl group was transformed into an aliphatic hydroxyl group by a thiol-ene click reaction. These diblock copolymers also exhibited LCST behavior in DME, and the nanoscale size of the aggregates increased upon heating. |
![]() | Hoang, Nhung T T; Lee, Jinhee; Lee, Byungyong; Kim, Hae-Young; Lee, Jungeun; Nguyen, Truc Ly; Seo, Myungeun; Kim, Sang Youl; Kim, Byung-Kwon Observing phase transition of a temperature-responsive polymer using electrochemical collisions on an ultramicroelectrode Journal Article Anal. Chem., 90 , pp. 7261-7266, 2018. Abstract | BibTeX | Tags: CGCP Electrochemistry LCST Poly(arylene ether) Polymer particle @article{Hoang2018, title = {Observing phase transition of a temperature-responsive polymer using electrochemical collisions on an ultramicroelectrode}, author = {Nhung T. T. Hoang and Jinhee Lee and Byungyong Lee and Hae-Young Kim and Jungeun Lee and Truc Ly Nguyen and Myungeun Seo and Sang Youl Kim and Byung-Kwon Kim}, url = {https://pubs.acs.org/doi/10.1021/acs.analchem.8b00437}, year = {2018}, date = {2018-05-31}, journal = {Anal. Chem.}, volume = {90}, pages = {7261-7266}, abstract = {Herein, a study on a new lower critical solution temperature (LCST) polymer in an organic solvent by an electrochemical technique has been reported. The phase-transition behavior of poly(arylene ether sulfone) (PAES) was examined on 1,2-dimethoxyethane (DME). At a temperature above the LCST point, polymer molecules aggregated to create polymer droplets. These droplets subsequently collided with an ultramicroelectrode (UME), resulting in a new form of staircase current decrease. The experimental collision frequency and collision signal were analyzed in relation to the concentration of the polymer. In addition, the degree of polymer aggregation associated with temperature change was also observed.}, keywords = {CGCP, Electrochemistry, LCST, Poly(arylene ether), Polymer particle}, pubstate = {published}, tppubtype = {article} } Herein, a study on a new lower critical solution temperature (LCST) polymer in an organic solvent by an electrochemical technique has been reported. The phase-transition behavior of poly(arylene ether sulfone) (PAES) was examined on 1,2-dimethoxyethane (DME). At a temperature above the LCST point, polymer molecules aggregated to create polymer droplets. These droplets subsequently collided with an ultramicroelectrode (UME), resulting in a new form of staircase current decrease. The experimental collision frequency and collision signal were analyzed in relation to the concentration of the polymer. In addition, the degree of polymer aggregation associated with temperature change was also observed. |