2021 |
|
![]() | Seo, Myungeun; Park, Jongmin 11,180,626, 2021. Abstract | BibTeX | Tags: Block polymer Diffusion Emulsion Hierarchical pore structure Macroporous Mesoporous PIMS Pore size control Porous polymer RAFT polymerization @patent{Park2021, title = {Method of preparing hierarchically porous polymers and hierarchically porous polymers prepared thereby}, author = {Myungeun Seo AND Jongmin Park}, year = {2021}, date = {2021-11-23}, number = {11,180,626}, location = {US}, abstract = {The present invention relates to a method of preparing a hierarchically porous polymer and a hierarchically porous polymer prepared thereby. The method comprises the steps of: (a) polymerizing an external oil phase of a high internal phase emulsion (HIPE) consisting aqueous droplets to produce a cross-linked block copolymer; (b) obtaining a macroporous polymer with interconnected macropores by removing the aqueous droplets; and (c) treating the obtained porous polymer with a base, thereby obtaining a hierarchically porous polymer having three-dimensional mesopores formed in the macroporous walls. According to the method, the macropore size and mesopore size of the hierarchically porous polymer can all be controlled. The hierarchically porous polymer prepared by the method can easily separate polymers having different sizes, and thus is highly useful in the polymer separation field.}, keywords = {Block polymer, Diffusion, Emulsion, Hierarchical pore structure, Macroporous, Mesoporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {patent} } The present invention relates to a method of preparing a hierarchically porous polymer and a hierarchically porous polymer prepared thereby. The method comprises the steps of: (a) polymerizing an external oil phase of a high internal phase emulsion (HIPE) consisting aqueous droplets to produce a cross-linked block copolymer; (b) obtaining a macroporous polymer with interconnected macropores by removing the aqueous droplets; and (c) treating the obtained porous polymer with a base, thereby obtaining a hierarchically porous polymer having three-dimensional mesopores formed in the macroporous walls. According to the method, the macropore size and mesopore size of the hierarchically porous polymer can all be controlled. The hierarchically porous polymer prepared by the method can easily separate polymers having different sizes, and thus is highly useful in the polymer separation field. |
2020 |
|
![]() | Seo, Myungeun; Park, Jongmin 10-2187683, 2020. BibTeX | Tags: Block polymer Diffusion Emulsion Hierarchical pore structure Macroporous Mesoporous PIMS Pore size control Porous polymer RAFT polymerization @patent{Seo2020d, title = {계층적 다공성 고분자의 제조방법 및 이로부터 제조된 계층적 다공성 고분자 (method of preparing hierarchically porous polymers and hierarchically porous polymers prepared thereby)}, author = {Myungeun Seo and Jongmin Park}, year = {2020}, date = {2020-12-01}, number = {10-2187683}, location = {KR}, keywords = {Block polymer, Diffusion, Emulsion, Hierarchical pore structure, Macroporous, Mesoporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {patent} } |
2018 |
|
![]() | Oh, Jaehoon; Seo, Myungeun 방사광 과학과 기술, 22-26 25 (3), 2018. BibTeX | Tags: Block polymer Diffusion Emulsion Microfluidics Permselectivity PIMS Pore size control Porous polymer RAFT polymerization @periodical{Oh2018b, title = {[밝은빛 이용 우수연구논문] 중합에 의해 유도되는 미세상분리을 이용한 나노다공성 고분자 마이크로캡슐의 제조 연구 (fabrication of nanoporous polymer microcapsules by polymerization-induced microphase separation)}, author = {Jaehoon Oh and Myungeun Seo}, year = {2018}, date = {2018-11-01}, issuetitle = {방사광 과학과 기술}, volume = {25}, number = {3}, series = {22-26}, keywords = {Block polymer, Diffusion, Emulsion, Microfluidics, Permselectivity, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {periodical} } |
![]() | Park, Jongmin; Kim, KyuHan; Seo, Myungeun Chem. Commun., 54 , pp. 7908-7911, 2018. Abstract | BibTeX | Tags: Block polymer Diffusion Emulsion Hierarchical pore structure Hyper-cross-linking Macroporous Mesoporous Microporous PIMS Pore size control Porous polymer RAFT polymerization @article{Park2018, title = {Hyper-cross-linked polymer with controlled multiscale porosity via polymerization-induced microphase separation within high internal phase emulsion}, author = {Jongmin Park and KyuHan Kim and Myungeun Seo}, url = {https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc03508c#!divAbstract}, year = {2018}, date = {2018-06-20}, journal = {Chem. Commun.}, volume = {54}, pages = {7908-7911}, abstract = {We report the preparation of hierarchically porous polymers containing fully interconnected and controlled micro-, meso-, and macropores, where a hyper-cross-linked microporous polymer skeleton forms a reticulating mesoporous wall that supports a highly porous macropore framework. These materials provide high specific surface area and >90% porosity, useful for rapid sorption of organic molecules.}, keywords = {Block polymer, Diffusion, Emulsion, Hierarchical pore structure, Hyper-cross-linking, Macroporous, Mesoporous, Microporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } We report the preparation of hierarchically porous polymers containing fully interconnected and controlled micro-, meso-, and macropores, where a hyper-cross-linked microporous polymer skeleton forms a reticulating mesoporous wall that supports a highly porous macropore framework. These materials provide high specific surface area and >90% porosity, useful for rapid sorption of organic molecules. |
![]() | Kim, Soobin; Seo, Myungeun Control of porosity in hierarchically porous polymers derived from hyper-crosslinked block polymer precursors Journal Article J. Polym. Sci. Part A: Polym. Chem., 56 , pp. 900-913, 2018, (featured in the front cover). Abstract | BibTeX | Tags: Block polymer Diffusion Hierarchical pore structure Hyper-cross-linking Mesoporous Microporous PIMS Porous polymer @article{Kim2018, title = {Control of porosity in hierarchically porous polymers derived from hyper-crosslinked block polymer precursors}, author = {Soobin Kim and Myungeun Seo}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/pola.28987}, year = {2018}, date = {2018-03-06}, journal = {J. Polym. Sci. Part A: Polym. Chem.}, volume = {56}, pages = {900-913}, abstract = {This image from the research of Soobin Kim and Myungeun Seo on page 900 shows a scanning electron micrograph of a hierarchically porous polymer synthesized by combination of hyper‐crosslinking with polymerization‐induced microphase separation (PIMS). Three‐dimensionally continuous mesopores with size of ca. 10 nm are evident. The PIMS process allows them to readily produce a crosslinked block polymer precursor with a disordered bicontinuous morphology composed of polylactide (PLA) and polystyrenic microdomains. A hyper‐crosslinking reaction degrades the PLA to generate the mesoporous space, and it simultaneously creates micropores smaller than 2 nm (not visible) within the polystyrenic microdomain to yield the hierarchical pore structure. This provides improved stability and accelerated diffusion to microporous surface. (DOI: 10.1002/pola.28966)}, note = {featured in the front cover}, keywords = {Block polymer, Diffusion, Hierarchical pore structure, Hyper-cross-linking, Mesoporous, Microporous, PIMS, Porous polymer}, pubstate = {published}, tppubtype = {article} } This image from the research of Soobin Kim and Myungeun Seo on page 900 shows a scanning electron micrograph of a hierarchically porous polymer synthesized by combination of hyper‐crosslinking with polymerization‐induced microphase separation (PIMS). Three‐dimensionally continuous mesopores with size of ca. 10 nm are evident. The PIMS process allows them to readily produce a crosslinked block polymer precursor with a disordered bicontinuous morphology composed of polylactide (PLA) and polystyrenic microdomains. A hyper‐crosslinking reaction degrades the PLA to generate the mesoporous space, and it simultaneously creates micropores smaller than 2 nm (not visible) within the polystyrenic microdomain to yield the hierarchical pore structure. This provides improved stability and accelerated diffusion to microporous surface. (DOI: 10.1002/pola.28966) |
![]() | Oh, Jaehoon; Kim, Bomi; Lee, Sangmin; Kim, Shin-Hyun; Seo, Myungeun Semipermeable microcapsules with a block polymer-templated nanoporous membrane Journal Article Chem. Mater. , 30 , pp. 273-279, 2018. Abstract | BibTeX | Tags: Block polymer Diffusion Emulsion Mesoporous Microfluidics Permselectivity PIMS Pore size control Porous polymer RAFT polymerization @article{Oh2018, title = {Semipermeable microcapsules with a block polymer-templated nanoporous membrane}, author = {Jaehoon Oh and Bomi Kim and Sangmin Lee and Shin-Hyun Kim and Myungeun Seo}, url = {https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.7b04340}, year = {2018}, date = {2018-01-09}, journal = {Chem. Mater. }, volume = {30}, pages = {273-279}, abstract = {Microcapsules with nanoporous membranes can regulate transmembrane transport in a size-dependent fashion while protecting active materials in the core from the surrounding, and are thereby useful as artificial cell models, carriers for cells and catalysts, and microsensors. In this work, we report a pragmatic microfluidic approach to producing such semipermeable microcapsules with precise control of the cutoff threshold of permeation. Using a homogeneous polymerization mixture for the polymerization-induced microphase separation (PIMS) process as the oil phase of water-in-oil-in-water (W/O/W) double emulsions, a densely cross-linked shell composed of a bicontinuous nanostructure that percolates through the entire thickness is prepared, which serves as a template for a monolithic nanoporous membrane of microcapsules with size-selective permeability. We demonstrate that the nanopores with precisely controlled size by the block polymer self-assembly govern molecular diffusion through the membrane and render manipulation of the cutoff threshold.}, keywords = {Block polymer, Diffusion, Emulsion, Mesoporous, Microfluidics, Permselectivity, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } Microcapsules with nanoporous membranes can regulate transmembrane transport in a size-dependent fashion while protecting active materials in the core from the surrounding, and are thereby useful as artificial cell models, carriers for cells and catalysts, and microsensors. In this work, we report a pragmatic microfluidic approach to producing such semipermeable microcapsules with precise control of the cutoff threshold of permeation. Using a homogeneous polymerization mixture for the polymerization-induced microphase separation (PIMS) process as the oil phase of water-in-oil-in-water (W/O/W) double emulsions, a densely cross-linked shell composed of a bicontinuous nanostructure that percolates through the entire thickness is prepared, which serves as a template for a monolithic nanoporous membrane of microcapsules with size-selective permeability. We demonstrate that the nanopores with precisely controlled size by the block polymer self-assembly govern molecular diffusion through the membrane and render manipulation of the cutoff threshold. |
2015 |
|
![]() | Seo, Myungeun; Kim, Soobin; Oh, Jaehoon; Kim, Sun-Jung; Hillmyer, Marc A Hierarchically porous polymers from hyper-cross-linked block polymer precursors Journal Article J. Am. Chem. Soc., 137 (2), pp. 600–603, 2015. Abstract | BibTeX | Tags: Block polymer Diffusion Hierarchical pore structure Hyper-cross-linking Mesoporous Microphase separation PIMS Pore size control Porous polymer @article{Seo*2015, title = {Hierarchically porous polymers from hyper-cross-linked block polymer precursors}, author = {Myungeun Seo and Soobin Kim and Jaehoon Oh and Sun-Jung Kim and Marc A. Hillmyer}, url = {https://pubs.acs.org/doi/abs/10.1021/ja511581w}, year = {2015}, date = {2015-01-21}, journal = {J. Am. Chem. Soc.}, volume = {137}, number = {2}, pages = {600–603}, abstract = {We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition–fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel–Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer.}, keywords = {Block polymer, Diffusion, Hierarchical pore structure, Hyper-cross-linking, Mesoporous, Microphase separation, PIMS, Pore size control, Porous polymer}, pubstate = {published}, tppubtype = {article} } We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition–fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel–Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer. |