2021 |
|
![]() | Seo, Myungeun; Park, Jongmin 11,180,626, 2021. Abstract | BibTeX | Tags: Block polymer Diffusion Emulsion Hierarchical pore structure Macroporous Mesoporous PIMS Pore size control Porous polymer RAFT polymerization @patent{Park2021, title = {Method of preparing hierarchically porous polymers and hierarchically porous polymers prepared thereby}, author = {Myungeun Seo AND Jongmin Park}, year = {2021}, date = {2021-11-23}, number = {11,180,626}, location = {US}, abstract = {The present invention relates to a method of preparing a hierarchically porous polymer and a hierarchically porous polymer prepared thereby. The method comprises the steps of: (a) polymerizing an external oil phase of a high internal phase emulsion (HIPE) consisting aqueous droplets to produce a cross-linked block copolymer; (b) obtaining a macroporous polymer with interconnected macropores by removing the aqueous droplets; and (c) treating the obtained porous polymer with a base, thereby obtaining a hierarchically porous polymer having three-dimensional mesopores formed in the macroporous walls. According to the method, the macropore size and mesopore size of the hierarchically porous polymer can all be controlled. The hierarchically porous polymer prepared by the method can easily separate polymers having different sizes, and thus is highly useful in the polymer separation field.}, keywords = {Block polymer, Diffusion, Emulsion, Hierarchical pore structure, Macroporous, Mesoporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {patent} } The present invention relates to a method of preparing a hierarchically porous polymer and a hierarchically porous polymer prepared thereby. The method comprises the steps of: (a) polymerizing an external oil phase of a high internal phase emulsion (HIPE) consisting aqueous droplets to produce a cross-linked block copolymer; (b) obtaining a macroporous polymer with interconnected macropores by removing the aqueous droplets; and (c) treating the obtained porous polymer with a base, thereby obtaining a hierarchically porous polymer having three-dimensional mesopores formed in the macroporous walls. According to the method, the macropore size and mesopore size of the hierarchically porous polymer can all be controlled. The hierarchically porous polymer prepared by the method can easily separate polymers having different sizes, and thus is highly useful in the polymer separation field. |
2020 |
|
![]() | Seo, Myungeun; Park, Jongmin 10-2187683, 2020. BibTeX | Tags: Block polymer Diffusion Emulsion Hierarchical pore structure Macroporous Mesoporous PIMS Pore size control Porous polymer RAFT polymerization @patent{Seo2020d, title = {계층적 다공성 고분자의 제조방법 및 이로부터 제조된 계층적 다공성 고분자 (method of preparing hierarchically porous polymers and hierarchically porous polymers prepared thereby)}, author = {Myungeun Seo and Jongmin Park}, year = {2020}, date = {2020-12-01}, number = {10-2187683}, location = {KR}, keywords = {Block polymer, Diffusion, Emulsion, Hierarchical pore structure, Macroporous, Mesoporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {patent} } |
![]() | Lee, Jeonghyeon; Seo, Myungeun [특집] 미세다공성 고분자의 세공 크기 제어 전략 (strategies for controlling pore size in microporous polymers) Periodical Polymer Science and Technology, 31 (3), 2020, ISBN: 1225-0260. BibTeX | Tags: Microporous Pore size control Porous polymer @periodical{Lee2020g, title = {[특집] 미세다공성 고분자의 세공 크기 제어 전략 (strategies for controlling pore size in microporous polymers)}, author = {Jeonghyeon Lee and Myungeun Seo}, isbn = {1225-0260}, year = {2020}, date = {2020-06-01}, issuetitle = {Polymer Science and Technology}, volume = {31}, number = {3}, keywords = {Microporous, Pore size control, Porous polymer}, pubstate = {published}, tppubtype = {periodical} } |
2018 |
|
![]() | Jeon, Choongseop; Han, Joong Jin; Seo, Myungeun Control of ion transport in sulfonated mesoporous polymer membranes Journal Article ACS Appl. Mater. Interfaces, 10 (47), pp. 40854–40862, 2018. Abstract | BibTeX | Tags: Mesoporous Permselectivity PIMS Polymer membrane Pore size control Proton conductivity RAFT polymerization @article{Jeon2018, title = {Control of ion transport in sulfonated mesoporous polymer membranes}, author = {Choongseop Jeon and Joong Jin Han and Myungeun Seo}, year = {2018}, date = {2018-11-01}, journal = {ACS Appl. Mater. Interfaces}, volume = {10}, number = {47}, pages = {40854–40862}, abstract = {We investigated proton conductivity and the permeability of monovalent cations across sulfonated mesoporous membranes (SMMs) prepared with well-defined pore sizes and adjustable sulfonic acid content. Mesoporous membranes with three-dimensionally continuous pore structure were produced by the polymerization-induced microphase separation (PIMS) process involving the reversible addition–fragmentation chain transfer (RAFT) copolymerization of styrene and divinylbenzene in the presence of a polylactide (PLA) macrochain transfer agent and subsequent PLA etching. This allowed us to control pore size by varying PLA molar mass. Postsulfonation of the mesoporous membranes yielded SMMs whose pore structure was retained. The sulfonic acid content was adjusted by reaction time. While proton conductivity increased with increasing ion exchange capacity (IEC) without noticeable dependence on the pore size, ion permeability was strongly influenced by the pore size and IEC values. Decreasing pore size and increasing IEC resulted in a decrease in ion permeability, suggesting that ions traverse across the membrane via the vehicular mechanism, through the mesoporous spaces filled with water. We further observed that the permeability of the vanadium oxide ion was dramatically suppressed by reducing the pore size below 4 nm, which was consistent with preliminary vanadium redox flow battery data. Our approach suggests a route to developing permselective membranes by decoupling proton conductivity and ion permeability, which could be useful for designing separator materials for next-generation battery systems.}, keywords = {Mesoporous, Permselectivity, PIMS, Polymer membrane, Pore size control, Proton conductivity, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } We investigated proton conductivity and the permeability of monovalent cations across sulfonated mesoporous membranes (SMMs) prepared with well-defined pore sizes and adjustable sulfonic acid content. Mesoporous membranes with three-dimensionally continuous pore structure were produced by the polymerization-induced microphase separation (PIMS) process involving the reversible addition–fragmentation chain transfer (RAFT) copolymerization of styrene and divinylbenzene in the presence of a polylactide (PLA) macrochain transfer agent and subsequent PLA etching. This allowed us to control pore size by varying PLA molar mass. Postsulfonation of the mesoporous membranes yielded SMMs whose pore structure was retained. The sulfonic acid content was adjusted by reaction time. While proton conductivity increased with increasing ion exchange capacity (IEC) without noticeable dependence on the pore size, ion permeability was strongly influenced by the pore size and IEC values. Decreasing pore size and increasing IEC resulted in a decrease in ion permeability, suggesting that ions traverse across the membrane via the vehicular mechanism, through the mesoporous spaces filled with water. We further observed that the permeability of the vanadium oxide ion was dramatically suppressed by reducing the pore size below 4 nm, which was consistent with preliminary vanadium redox flow battery data. Our approach suggests a route to developing permselective membranes by decoupling proton conductivity and ion permeability, which could be useful for designing separator materials for next-generation battery systems. |
![]() | Oh, Jaehoon; Seo, Myungeun 방사광 과학과 기술, 22-26 25 (3), 2018. BibTeX | Tags: Block polymer Diffusion Emulsion Microfluidics Permselectivity PIMS Pore size control Porous polymer RAFT polymerization @periodical{Oh2018b, title = {[밝은빛 이용 우수연구논문] 중합에 의해 유도되는 미세상분리을 이용한 나노다공성 고분자 마이크로캡슐의 제조 연구 (fabrication of nanoporous polymer microcapsules by polymerization-induced microphase separation)}, author = {Jaehoon Oh and Myungeun Seo}, year = {2018}, date = {2018-11-01}, issuetitle = {방사광 과학과 기술}, volume = {25}, number = {3}, series = {22-26}, keywords = {Block polymer, Diffusion, Emulsion, Microfluidics, Permselectivity, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {periodical} } |
![]() | Park, Jongmin; Kim, KyuHan; Seo, Myungeun Chem. Commun., 54 , pp. 7908-7911, 2018. Abstract | BibTeX | Tags: Block polymer Diffusion Emulsion Hierarchical pore structure Hyper-cross-linking Macroporous Mesoporous Microporous PIMS Pore size control Porous polymer RAFT polymerization @article{Park2018, title = {Hyper-cross-linked polymer with controlled multiscale porosity via polymerization-induced microphase separation within high internal phase emulsion}, author = {Jongmin Park and KyuHan Kim and Myungeun Seo}, url = {https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc03508c#!divAbstract}, year = {2018}, date = {2018-06-20}, journal = {Chem. Commun.}, volume = {54}, pages = {7908-7911}, abstract = {We report the preparation of hierarchically porous polymers containing fully interconnected and controlled micro-, meso-, and macropores, where a hyper-cross-linked microporous polymer skeleton forms a reticulating mesoporous wall that supports a highly porous macropore framework. These materials provide high specific surface area and >90% porosity, useful for rapid sorption of organic molecules.}, keywords = {Block polymer, Diffusion, Emulsion, Hierarchical pore structure, Hyper-cross-linking, Macroporous, Mesoporous, Microporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } We report the preparation of hierarchically porous polymers containing fully interconnected and controlled micro-, meso-, and macropores, where a hyper-cross-linked microporous polymer skeleton forms a reticulating mesoporous wall that supports a highly porous macropore framework. These materials provide high specific surface area and >90% porosity, useful for rapid sorption of organic molecules. |
![]() | Oh, Jaehoon; Kim, Bomi; Lee, Sangmin; Kim, Shin-Hyun; Seo, Myungeun Semipermeable microcapsules with a block polymer-templated nanoporous membrane Journal Article Chem. Mater. , 30 , pp. 273-279, 2018. Abstract | BibTeX | Tags: Block polymer Diffusion Emulsion Mesoporous Microfluidics Permselectivity PIMS Pore size control Porous polymer RAFT polymerization @article{Oh2018, title = {Semipermeable microcapsules with a block polymer-templated nanoporous membrane}, author = {Jaehoon Oh and Bomi Kim and Sangmin Lee and Shin-Hyun Kim and Myungeun Seo}, url = {https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.7b04340}, year = {2018}, date = {2018-01-09}, journal = {Chem. Mater. }, volume = {30}, pages = {273-279}, abstract = {Microcapsules with nanoporous membranes can regulate transmembrane transport in a size-dependent fashion while protecting active materials in the core from the surrounding, and are thereby useful as artificial cell models, carriers for cells and catalysts, and microsensors. In this work, we report a pragmatic microfluidic approach to producing such semipermeable microcapsules with precise control of the cutoff threshold of permeation. Using a homogeneous polymerization mixture for the polymerization-induced microphase separation (PIMS) process as the oil phase of water-in-oil-in-water (W/O/W) double emulsions, a densely cross-linked shell composed of a bicontinuous nanostructure that percolates through the entire thickness is prepared, which serves as a template for a monolithic nanoporous membrane of microcapsules with size-selective permeability. We demonstrate that the nanopores with precisely controlled size by the block polymer self-assembly govern molecular diffusion through the membrane and render manipulation of the cutoff threshold.}, keywords = {Block polymer, Diffusion, Emulsion, Mesoporous, Microfluidics, Permselectivity, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } Microcapsules with nanoporous membranes can regulate transmembrane transport in a size-dependent fashion while protecting active materials in the core from the surrounding, and are thereby useful as artificial cell models, carriers for cells and catalysts, and microsensors. In this work, we report a pragmatic microfluidic approach to producing such semipermeable microcapsules with precise control of the cutoff threshold of permeation. Using a homogeneous polymerization mixture for the polymerization-induced microphase separation (PIMS) process as the oil phase of water-in-oil-in-water (W/O/W) double emulsions, a densely cross-linked shell composed of a bicontinuous nanostructure that percolates through the entire thickness is prepared, which serves as a template for a monolithic nanoporous membrane of microcapsules with size-selective permeability. We demonstrate that the nanopores with precisely controlled size by the block polymer self-assembly govern molecular diffusion through the membrane and render manipulation of the cutoff threshold. |
2017 |
|
![]() | Park, Jongmin; Saba, Stacey A; Hillmyer, Marc A; Kang, Dong-Chang; Seo, Myungeun Effect of homopolymer in polymerization-induced microphase separation process Journal Article Polymer, 126 , pp. 338-351, 2017. Abstract | BibTeX | Tags: Blend Block polymer Hierarchical pore structure Macroporous Mesoporous PIMS Pore size control Porous polymer RAFT polymerization @article{Park2017, title = {Effect of homopolymer in polymerization-induced microphase separation process}, author = {Jongmin Park and Stacey A. Saba and Marc A. Hillmyer and Dong-Chang Kang and Myungeun Seo}, url = {https://www.sciencedirect.com/science/article/abs/pii/S003238611730424X}, year = {2017}, date = {2017-09-22}, journal = {Polymer}, volume = {126}, pages = {338-351}, abstract = {We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratio of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.}, keywords = {Blend, Block polymer, Hierarchical pore structure, Macroporous, Mesoporous, PIMS, Pore size control, Porous polymer, RAFT polymerization}, pubstate = {published}, tppubtype = {article} } We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratio of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers. |
2015 |
|
![]() | Oh, Jaehoon; Kim, Soobin; Park, Jongmin; Seo, Myungeun [일반총설] 블록 공중합체 전구체로부터 유도되는 다공성 고분자 (porous polymers derived from block polymer precursors) Periodical Polymer Science and Technology, 506-518 26 (6), 2015, ISBN: 1225-0260. BibTeX | Tags: Block polymer Mesoporous Microphase separation PIMS Pore size control Porous polymer @periodical{Oh2015c, title = {[일반총설] 블록 공중합체 전구체로부터 유도되는 다공성 고분자 (porous polymers derived from block polymer precursors)}, author = {Jaehoon Oh and Soobin Kim and Jongmin Park and Myungeun Seo}, isbn = {1225-0260}, year = {2015}, date = {2015-12-06}, issuetitle = {Polymer Science and Technology}, journal = {고분자 과학과 기술}, volume = {26}, number = {6}, series = {506-518}, keywords = {Block polymer, Mesoporous, Microphase separation, PIMS, Pore size control, Porous polymer}, pubstate = {published}, tppubtype = {periodical} } |
![]() | Seo, Myungeun; Kim, Soobin; Oh, Jaehoon; Kim, Sun-Jung; Hillmyer, Marc A Hierarchically porous polymers from hyper-cross-linked block polymer precursors Journal Article J. Am. Chem. Soc., 137 (2), pp. 600–603, 2015. Abstract | BibTeX | Tags: Block polymer Diffusion Hierarchical pore structure Hyper-cross-linking Mesoporous Microphase separation PIMS Pore size control Porous polymer @article{Seo*2015, title = {Hierarchically porous polymers from hyper-cross-linked block polymer precursors}, author = {Myungeun Seo and Soobin Kim and Jaehoon Oh and Sun-Jung Kim and Marc A. Hillmyer}, url = {https://pubs.acs.org/doi/abs/10.1021/ja511581w}, year = {2015}, date = {2015-01-21}, journal = {J. Am. Chem. Soc.}, volume = {137}, number = {2}, pages = {600–603}, abstract = {We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition–fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel–Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer.}, keywords = {Block polymer, Diffusion, Hierarchical pore structure, Hyper-cross-linking, Mesoporous, Microphase separation, PIMS, Pore size control, Porous polymer}, pubstate = {published}, tppubtype = {article} } We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition–fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel–Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer. |